首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2010,45(3):407-414
This paper studies the synthesis of triacylglycerols (TAGs) rich in palmitic acid (PA) at position 2, from palm oil stearin (POS), a vegetable oil highly rich in this acid (60%). The developed process consists of two steps: (1) obtaining PA enriched free fatty acids (FFAs), and (2) enrichment of POS in PA by acidolysis of this oil with PA enriched FFAs, catalyzed by lipase Novozym 435. In step (1) two PA enriched FFA mixtures were obtained: one by saponification of POS, and a PA concentrate (75.1% PA) obtained by crystallization at low temperature in solvents. The latter was obtained carrying out two crystallizations in acetone at −24 and −20 °C, from which PA was recovered in the solid phases with a total yield of 84%. These PA enriched FFA mixtures were used in step (2) of acidolysis of POS, along with commercial PA (98% PA). In this acidolysis step four factors were studied: temperature, hexane/reaction mixture ratio, FFA/POS molar ratio and the intensity of treatment (IOT = lipase amount × reaction time/POS amount). The best results (TAGs with 79% PA and 75% PA at position 2) were obtained with commercial PA, at 37 °C, 10 mL hexane/g reaction mixture, a FFA/POS molar ratio 3:1 (1:1, w/w) and an IOT = 9.6 g lipase × h/g POS (for example 48 h, 10 g lipase and 50 g POS). PA enriched TAGs were purified neutralizing the FFAs by KOH hydroethanolic solutions and extracting the TAGs with hexane. In this way 99% pure acylglycerols (TAG + DAG) were obtained; the recovery yield of this purification step was 95%. The experiments carried out with POS demonstrated that it is possible to use only this oil (60% PA, 23% PA at position 2) as a source of PA to obtain a TAG with 70.7% PA and 70.5% PA at position 2. This process consists of four steps: (1) saponification of POS, (2) crystallization of FFAs to obtain PA enriched FFAs (75.1% PA), (3) acidolysis of POS with these FFAs, catalyzed with Novozym 435, to produce PA enriched TAGs at position 2 (70.5% PA) and (4) purification of TAGs to obtain approximately 95% purity and yield. These PA enriched TAGs could be used to obtain structured TAGs rich in PA at position 2 and in oleic acid at positions 1 and 3 (OPO), which is the principal TAG of human milk fat.  相似文献   

2.
The psychrotolerant bacterium Shewanella sp. G5 was used to study differential protein expression on glucose and cellobiose as carbon sources in cold-adapted conditions. This strain was able to growth at 4 °C, but reached the maximal specific growth rate at 37 °C, exhibiting similar growing rates values with glucose (μ: 0.4 h−1) and cellobiose (μ: 0.48 h−1). However, it grew at 15 °C approximately in 30 h, with specific growing rates of 0.25 and 0.19 h−1 for cellobiose and glucose, respectively. Thus, this temperature was used to provide conditions related to the environment where the organism was originally isolated, the intestinal content of Munida subrrugosa in the Beagle Channel, Fire Land, Argentina. Cellobiose was reported as a carbon source more frequently available in marine environments close to shore, and its degradation requires the enzyme β-glucosidase. Therefore, this enzymatic activity was used as a marker of cellobiose catabolism. Zymogram analysis showed the presence of cold-adapted β-glucosidase activity bands in the cell wall as well as in the cytoplasm cell fractions. Two-dimensional gel electrophoresis of the whole protein pattern of Shewanella sp. G5 revealed 59 and 55 different spots induced by cellobiose and glucose, respectively. Identification of the quantitatively more relevant proteins suggested that different master regulation schemes are involved in response to glucose and cellobiose carbon sources. Both, physiological and proteomic analyses could show that Shewanella sp. G5 re-organizes its metabolism in response to low temperature (15 °C) with significant differences in the presence of these two carbon sources.  相似文献   

3.
Acinetobacter calcoaceticus was cultivated in a well-aerated stirred tank reactor and its phosphate uptake capacity was investigated. Statistical media optimization was done to figure out favourable growth conditions of Acinetobacter calcoaceticus NRRLB-552. Plackett–Burman design was used to figure out the key nutrients (sodium acetate, ammonium chloride and calcium chloride) featuring high growth and/or uptake of phosphate. The optimal concentrations for these nutrients were (sodium acetate 5.0 g/l, ammonium chloride 0.67 g/l, calcium chloride 0.05 g/l) obtained by central composite design (CCD) protocols and verified in shake flask cultivations. Predicted and experimental dry cell weights obtained using the optimized media were 2.046 and 2.54 g/l indicating 97% agreement. The optimal values of pH and temperature for growth and phosphate uptake were found to be 7.69 and 31.86 °C, respectively, using CCD. Batch kinetics was also established in shake flask and fermenter using optimized medium and environmental conditions. Phosphate uptakes of 21 mg/g biomass and 36 mg/g biomass were obtained in shake flask and fermenter, respectively. The possible inhibition of nutrients (carbon, nitrogen and phosphate) was also established under shake flask cultivation conditions. Growth of the bacteria was inhibited at a concentration higher than 0.4% carbon and 0.6% nitrogen. However increasing concentration of phosphate did not show any inhibitory effect on growth. The above kinetics and inhibition data will serve as suitable database for the development of a mathematical model for growth and its use will be able to facilitate appropriate reactor design for the removal of phosphates from industrial effluents.  相似文献   

4.
Soil respiration is the main form of carbon flux from soil to atmosphere in the global carbon cycle. The effect of temperature on soil respiration rate is important in evaluating the potential feedback of soil organic carbon to global warming. We incubated soils from the alpine meadow zone and upper rocky zone along an altitudinal gradient (4400–5500 m a.s.l.) on the Tibetan Plateau under various temperature and soil moisture conditions. We evaluated the potential effects of temperature and soil moisture on soil respiration and its variation across altitudes. Soil respiration rates increased as the temperature increased. At 60% of soil water content, they averaged 0.21–5.33 μmol g soil−1 day−1 in the alpine meadow zone and 0.11–0.50 μmol g soil−1 day−1 in the rocky zone over the experimental temperature range. Soil respiration rates in the rocky zone did not increase between 25 and 35 °C, probably because of heat stress. Rates of decomposition of organic matter were high in the rocky zone, where the CN ratio was smaller than in the middle altitudes. Soil respiration rates also increased with increasing soil water content from 10% to 80% at 15 °C, averaging 0.04–2.00 μmol g soil−1 day−1 in the alpine meadow zone and 0.03–0.35 μmol g soil−1 day−1 in the rocky zone. Maximum respiration rates were obtained in the middle part of the alpine slope in any case of experimental temperature and soil moisture. The change patterns in soil respiration rate along altitude showed similar change pattern in soil carbon content. Although the altitude is a variable including various environmental factors, it might be used as a surrogate parameter of soil carbon content in alpine zone. Results suggest that temperature, soil moisture and altitude are used as appropriate environmental indicators for estimating the spatial distribution of potential soil respiration in alpine zone.  相似文献   

5.
《Process Biochemistry》2014,49(6):927-935
The esterase E34Tt (YP_004875.1) from Thermus thermophilus HB27 was cloned, expressed in Escherichia coli as a His-tagged protein, purified and characterized. The gene sequence was subcloned into a T-vector, released with the restriction enzymes BamHI and HindIII, ligated to a pET-21d(+) vector, and transferred to E. coli BL21 (DE3) cells. Inducer concentration (isopropyl β-d-1-thiogalactopyranoside, IPTG) and cultivation time before and after induction were optimized. Best results were obtained by adding 0.25 mM IPTG after 8 h of cultivation and maintaining the induction during 4 extra hours. Most of the enzyme (94%) remained membrane-associated and had to be extracted with a detergent. From the membrane crude extract, the His-tagged E34Tt was purified as a dimer (71.8 kDa) in a single purification step by using metal affinity chromatography. The Rosso's model was used to optimize the reaction conditions. E34Tt-His6 was active in a wide temperature (19.7–79.4 °C) and pH range (4.0–9.3), and maximal activity was determined at pH 6.3 and 58.2 °C, which is 10–18 °C higher than the optimal reaction temperature of the previously reported variants expressed in mesophilic yeasts. E34Tt-His6 preferentially hydrolyzed esters with ten carbon atoms, and was highly thermostable (half-life of 107.9 min at 85 °C), suggesting that E34Tt-His6 has potential for industrial applications.  相似文献   

6.
Production of recombinant antibody fragments (Fabs) in Escherichia coli has gained interest because of the recognised advantages of this expression system and because Fabs do not require glycosylation. However, more comprehensive studies on the factors that influence expression conditions and product yield are still required for full process development. In this work, the effect of growth temperature on the periplasmatic expression of the 3H6 Fab in E. coli was studied in carbon-limited continuous cultures operated at medium cell densities. Three different temperatures were assayed, namely 37, 33 and 30 °C. Results showed that biomass yield was not affected within this temperature range whilst product yield increased as temperature decreased. Periplasmic Fab secretion corresponded to 30% of the produced Fab protein and its efficiency was irrespective of the process temperature. Moreover, considerable product leakage to the culture supernatant was detected in all cases, ranging from about 40% at 37 °C to almost 70% at 30 °C. Besides, plasmid loss was observed along process time indicating a selective pressure against plasmid-bearing cells. This study supports the potential of continuous cultivations of E. coli at medium cell densities under well controlled conditions as a tool for characterising the impact of environmental parameters and cell physiology under protein production conditions.  相似文献   

7.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

8.
Exploitation of olive kernel for bioenergy production, with respect to the green house gases (GHGs) mitigation, is the main aim of this work. In this study, olive kernels were used as a solid biofuel, and high temperature steam gasification (HTSG) was investigated, in the fixed bed unit at KTH Sweden, with regard to hydrogen maximization in the produced gasification gas. Experiments were carried out in a temperature range of 750–1050 °C, with steam as the gasifying agent. The behaviour of olive kernels, under residence times from 120 up to 960 s, has been studied. At 1050 °C, a medium to high calorific value gas was obtained (LHVgas = 13.62 MJ/Nm3), while an acquired H2/CO molar ratio equal to four proved that olive kernel HTSG gasification could be an effective technology for a hydrogen-rich gas production (~40%vv H2 in the produced gasification gas at 1050 °C). The produced char contained 79%ww of fixed carbon, low chlorine and sulphur content, which enables it for further re-use for energetic purposes. Tar content in the produced gas at 750 °C was 124.07 g/Nm3, while a 1050 °C at 79.64% reduction was observed and reached the value of 25.26 g/Nm3.  相似文献   

9.
《Journal of Asia》2014,17(3):349-354
Temperature-dependent development of Spodoptera exigua (Hübner) were evaluated at eight constant temperatures of 12, 15, 20, 25, 30, 33, 34 and 36 °C with a variation of 0.5 °C on sugar beet leaves. No development occurred at 12 °C and 36 °C. Total developmental time varied from 120.50 days at 15 °C to 14.50 days at 33 °C. As temperature increased from 15 °C to 33 °C, developmental rate (1/developmental time) of S. exigua increased but declined at 34 °C. The lower temperature threshold (Tmin) was estimated to be 12.98 °C and 12.45 °C, and the thermal constant (K) was 294.99 DD and 311.76 DD, using the traditional and Ikemoto–Takai linear models, respectively. The slopes of the Ikemoto–Takai linear model for different immature stages were different, violating the assumption of rate isomorphy. Data were fitted to three nonlinear models to predict the developmental rate and estimate the critical temperatures. The Tmin values estimated by Lactin-2 (12.90 °C) and SSI (13.35 °C) were higher than the value estimated by Briere-2 (8.67 °C). The estimated fastest development temperatures (Tfast) by the Briere-2, Lactin-2 and SSI models for overall immature stages development of S. exigua were 33.4 °C, 33.9 °C and 32.4 °C, respectively. The intrinsic optimum temperature (TΦ) estimated from the SSI model was 28.5 °C, in which the probability of enzyme being in its native state is maximal. The upper temperature threshold (Tmax) values estimated by these three nonlinear models varied from 34.00 °C to 34.69 °C. These findings on thermal requirements can be used to predict the occurrence, number of generations and population dynamics of S. exigua.  相似文献   

10.
The effect of different overwintering temperatures (2.5 ± 1 °C in a refrigerator or outdoor natural overwintering on wet topsoil with weak frosts) on the freezing temperature and survival rate of turions of 10 aquatic plant species with different ecological traits (free-floating habit or bottom rooting) was studied using mini thermocouples. Dormant, non-hardened turions of 9 species exhibited freezing within a narrow temperature range of ?7.0 to ?10.2 °C, while Hydrocharis morsus-ranae froze at ?3.6 °C. The survival rate of the turions after the measurements was, however, very low (0–38%). In several species, the freezing temperature of turions at the beginning of germination was not significantly different (at p < 0.05) from the dormant ones. The mean freezing temperature of outdoor hardened turions of 6 species was within a very narrow range of ?2.8 to ?3.3 °C and was thus significantly higher by 4–7 °C (p < 0.0002) than that for the non-hardened turions. It is assumed that the freezing temperatures indicate freezing of the extracellular water. The hardened turions of all 7 species were able to survive mild winter frosts under the topsoil conditions at a rate of 76–100%. These characteristics suggest that the turions of aquatic species can be hardened by weak frosts and that their frost hardiness is based on the shift from frost avoidance in non-hardened turions to frost tolerance.  相似文献   

11.
The effect of temperature on Cyprinus carpio spermatozoa in vitro was investigated with spermatozoa activated at 4, 14, and 24 °C. At 30 s post-activation, motility rate was significantly higher at 4 °C compared to 14 and 24 °C, whereas highest swimming velocity was observed at 14 °C. The thiobarbituric acid-reactive substance (TBARS) content was significantly higher at 14 °C and 24 °C than at 4 °C in motile spermatozoa. No significant differences in catalase and superoxide dismutase activity relative to temperature were observed. This study provides new information regarding effect of temperature on lipid peroxidation intensity and spermatozoon motility parameters in carp. The elevation of TBARS seen at higher temperatures could be due to inadequate capacity of antioxidant enzymes to protect the cell against the detrimental effects of oxidative stress induced by higher temperatures.  相似文献   

12.
The potential of thermal analysis for differentiating between oleaginous and non-oleaginous microorganisms was investigated using thermogravimetry (TG) and differential thermal analysis (DTA). The model oleaginous microorganisms used in the present study were the fungi, Mortierella alpina IFO32281 and Mortierella alliacea YN-15, the unicellular alga, Aurantiochytrium sp. CB 15-5, and the yeast, Rhodosporidium toruloides DMKU3-TK 16. Escherichia coli JM109, Rhodococcus opacus B-4, and Saccharomyces cerevisiae were used as the control non-oleaginous microorganisms. In simultaneous TG and DTA, the furnace temperature was linearly increased from 30 to 280 °C, decreased to 30 °C, linearly increased from 30 to 360 °C, and then isothermally held at 360 °C for 30 min. This two-step linear temperature program was effective in resolving overlapping exothermic peaks in the DTA curves in the temperature range from 280 to 360 °C. Heat evolved from a microbial sample was estimated from the area under the exothermic peak between 280 and 360 °C using indium as a standard material. There was a linear relationship between the exothermic heat and total lipid content of the tested microorganisms. Exothermic heat per dry sample mass (kJ/g) in the temperature range from 280 to 360 °C is a promising measure for differentiating between oleaginous and non-oleaginous microorganisms.  相似文献   

13.
《农业工程》2014,34(1):66-71
Burned and unburned mineral soils (0–10 cm) from a 40-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at different temperatures (25 °C and 35 °C) and humidity [25%, 50%, and 75% of water holding capacity (WHC)] conditions. Carbon (C) mineralization of all soils was determined using CO2 respiration method. The results showed that CO2 evolution rates of the burned and control soils exhibited similar temporal patterns, and similar responses to temperature and moisture. CO2 evolution rates for all soil samples decreased with incubation time. At different humidity conditions, average rate of C mineralization and cumulative mineralized C from burned and control soils were significantly higher at 35 °C than at 25 °C. This implied that C mineralization was less sensitive to soil moisture than to temperature. In both soils at 25 °C or 35 °C, the amount of soil evolved CO2 over the 90 days incubation increased with increasing moisture content from 25% to 75% WHC. A temperature coefficient (Q10) varied with soil moisture contents. The maximum values recorded for Q10 were 1.7 in control soil and 1.6 in burned soil both at 25% WHC. However, there were no significant differences in Q10 values between the control and burned soils over all moisture ranges (P > 0.05). The data of cumulative C–CO2 released from control and burned soils were fitted to two different kinetic models. The two simultaneous reactions model described mineralization better than the first-order exponential model, which reflected the heterogeneity of substrate quality. Based on these results, it is possible to conclude that temperature and moisture are important in the controls of C mineralization, and the combined effects of these variables need to be considered to understand and predict the response of CO2 release in subtropical ecosystems to climate change.  相似文献   

14.
This study took place on Ximen Island within Ximen Island Marine Special Reserve, Yueqing County, Zhejiang Province, at the northernmost boundary of artificially planted mangrove plantations, to study changes in the physiological characteristics of different aged Kandelia obovata trees (aged 1, 2, 4, 8 and 53 years). Leaves and stems of different aged K. obovata were sampled in November and December (mean air temperature was 15.8 °C and 7.6 °C, respectively) for measurements of physiological traits. Results showed that from November to December, content of both chlorophyll and carotenoids, the chlorophyll a/b ratio and activity of peroxidase (POD) in leaves, the content of total soluble sugars, free amino acids, and content of K+ in the leaves and stems first increased and then decreased with increasing age. Also, Na+ content in the leaves and stems, as well as malondialdehyde (MDA) content in leaves decreased. Importantly, the measured differences in these chemicals in trees of different ages were more significant in December. We conclude that older individuals of the mangrove K. obovata were able to survive by maintaining higher levels of photosynthetic pigments and activities of antioxidant enzymes, and were able to effectively regulate ion stabilization, which promoted carbon and nitrogen metabolism. Also, disorders related to the ion balance and carbon and nitrogen metabolism may not allow K. obovata seedlings to adapt to low temperature stress. Our findings indicate that attempts to provide safe overwintering of K. obovata seedling may face significant challenges.  相似文献   

15.
Response surface methodology was used to evaluate the quantitative effects of three independent variables: rapeseed moisture content, concentration of the added enzymes and conditioning temperature, on the antioxidant capacity and total phenolic, tocopherol, and phospholipid contents in the enzyme-treated rapeseed oils. The highest antioxidant capacity (1220.0, 964.8 μmol TE/100 g) total phenolic (83.3, 74.0 mg SA/100 g) and phospholipid (12,532, 12,376 mg/kg) contents reveal two rapeseed oils extruded from seeds contained 11% moisture, treated with cellulolytic and pectolytic enzymes (0.05%), respectively, and heated at 120 °C. However, the highest content of total tocopherols was determined in rapeseed oils pressed from seeds with 7% moisture, after addition of cellulolytic (0.05%) and pectolytic (0.1%) enzymes, heated at 90 and 105 °C, respectively. Total phenolic and phospholipid contents in the enzyme-treated rapeseed oils correlated significantly (p < 0.0000001) with antioxidant capacities of oils (R2 = 0.8710 and 0.6581, respectively). Experimental results of the antioxidant capacity, total phenolic, tocopherol and phospholipid contents were close to the predicted values calculated from the polynomial response surface models equations (R2 = 0.9727, 0.9870, 0.8390 and 0.9706 for the cellulolytic enzyme-assisted rapeseed oils and R2 = 0.9148, 0.9489, 0.9426 and 0.9479 for the pectolytic enzyme-assisted rapeseed oils). The optimum rapeseed moisture content, enzyme concentration and conditioning temperature for the cellulolytic and pectolytic enzyme-treated rapeseed oils were 11% and 9.7%, 0.08% and 0.1%, and 120 °C, respectively.  相似文献   

16.
The heterologous expression of terpene synthases in microbial hosts has opened numerous possibilities for bioproduction of desirable metabolites. Photosynthetic microbial hosts present a sustainable alternative to traditional fermentative systems, using freely available (sun)light and carbon dioxide as inputs for bio-production. Here, we report the expression of a patchoulol synthase from Pogostemon cablin Benth in the model green microalga Chlamydomonas reinhardtii. The sesquiterpenoid patchoulol was produced from the alga and was used as a marker of sesquiterpenoid production capacity. A novel strategy for gene loading was employed and patchoulol was produced up to 922±242 µg g−1 CDW in six days. We additionally investigated the effect of carbon source on sesquiterpenoid productivity from C. reinhardtii in scale-up batch cultivations. It was determined that up to 1.03 mg L−1 sesquiterpenoid products could be produced in completely photoautotrophic conditions and that the alga exhibited altered sesquiterpenoid production metabolism related to carbon source.  相似文献   

17.
《Journal of Asia》2014,17(4):803-810
The effect of constant temperatures on development and survival of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae), a newly reported insect species used to produce insect tea in Guizhou province (China), was studied in laboratory conditions at seven temperatures (19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, and 37 °C) on Platycarya strobilacea. Increasing the temperature from 19 °C to 31 °C led to a significant decrease in the developmental time from egg to adult emergence, and then the total developmental time increased at 34 °C. Egg incubation was the stage where L. haraldusalis experienced the highest mortality at all temperatures. The survival of L. haraldusalis was significantly higher at 25 °C and 28 °C, whereas none of the eggs hatched at 37 °C. Common and Ikemoto linear models were used to describe the relationship between the temperature and the developmental rate for each immature stage of L. haraldusalis. The estimated values of the lower temperature threshold and thermal constant of the total immature stages using Common and Ikemoto linear models were 11.34 °C and 11.20 °C, and 939.85 and 950.41 degree-days, respectively. Seven nonlinear models were used to fit the experimental data to estimate the developmental rate of L. haraldusalis. Based on the biological significance for model evaluation, Ikemoto linear, Logan-6, and SSI were the best models that fitted each immature stage of L. haraldusalis and they were used to estimate the temperature thresholds. These thermal requirements and temperature thresholds are crucial for facilitating the development of factory-based mass rearing of L. haraldusalis.  相似文献   

18.
Ostreopsis ovata is a benthic dinoflagellate that produces palytoxin and ovatoxins. Blooms of O. ovata causing human health problems and mortality of benthic fauna have been reported from many tropical and temperate marine waters. In the present study we examined the combined effects of temperature and different nutrient conditions on the biochemical composition, growth, toxicity and carbohydrate production of an O. ovata strain originating from the Tyrrhenian Sea. O. ovata cultures with N:P ratios of 1.6, 16 and 160 (N deficient, NP sufficient and P deficient, respectively) were grown at 20 °C and 30 °C. Biomass accumulation, growth rates, cell volumes, biochemical composition, cell toxicity and carbohydrate production in each treatment were studied. Results indicated that under nutrient sufficiency O. ovata biomass accumulation increased significantly compared to N and P deficiency and also that N limitation severely affected growth. The highest growth rates were recorded at 30 °C. Cellular contents and the atomic ratios of C, N and P were higher in the cells grown at 20 °C than in those grown at 30 °C. O. ovata cell volumes increased at 20 °C. N deficiency significantly increased cell toxicity. Toxicity per cell was higher at 20 °C, but per carbon was highest at 30 °C. The highest carbohydrate production was found in conditions of N deficiency and at the lower temperature.Our study suggests that temperature increases due to global warming and nutrient enrichment of coastal waters stimulate the proliferation of O. ovata, particularly for the strains that have become adapted to warm temperate waters.  相似文献   

19.
The present study reports the temperature tolerance, estimated using dynamic and static methodologies, and preferred temperature range, based on oxygen consumption rate (OCR), of juvenile meagre (Argyrosomus regius) (Asso, 1801) (3.4±0.9 g) after 30 days of acclimation at 18, 22, 26 and 30 °C. Meagre has dynamic and static thermal tolerance zones of 551 °C2 and 460 °C2, respectively and is a low resistance fish species, with a resistance zone area of 87 °C2. The OCR of juvenile meagre at the above acclimation temperatures was 370, 410, 618 and 642 mg h−1 kg1, respectively, and is significantly different (P<0.0001, n=20). The fact that OCR increases by rising temperatures and gradually decreases after 26 °C indicates that the preferred temperature range of juvenile meagre is between 26 and 30 °C. Our study suggests that meagre is unable to respond to low and high temperature variation in aquaculture facilities or its natural habitats.  相似文献   

20.
The germination characteristics of Alexandrium minutum cysts from the Fal estuary were studied at different conditions of temperature (4–24 °C) and salinity (15–35‰) and in the dark and low light intensity (2 μmol?2 s?1). Sediment sub-samples were directly cultured and processed at the end of the experiment for counts of non-germinated cysts. A decrease in the number of cysts was interpreted as germination that was calculated by comparison of the number of cysts over time with that of initial counts. The 50% germination time (time at which 50% of the total initial number of cysts had germinated) was calculated for each condition. A. minutum did not germinate in the dark but it germinated under all other conditions studied. Highest germination occurred at salinities of 30 psu and 35 psu and temperatures from 8 °C to 24 °C (germination rate—expressed as the inverse of the 50% germination time: 1.1–1.2). Lowest germination occurred at 15 psu and 4 °C and 24 °C (germination rate: 3.9–3.8). However, little variation in germination rates occurred across the conditions studied. As these conditions represent those likely in the estuary it is probable that A. minutum cysts on the surface of the sediments represent a constant source of cells to the water column and sediment disturbance (revealing buried cysts) could rapidly inoculate the water column with vegetative cells. This data was used to develop a model for Alexandrium germination from coastal sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号