首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Degradation of mitochondria via a selective form of autophagy, named mitophagy, is a fundamental mechanism conserved from yeast to humans that regulates mitochondrial quality and quantity control. Mitophagy is promoted via specific mitochondrial outer membrane receptors, or ubiquitin molecules conjugated to proteins on the mitochondrial surface leading to the formation of autophagosomes surrounding mitochondria. Mitophagy‐mediated elimination of mitochondria plays an important role in many processes including early embryonic development, cell differentiation, inflammation, and apoptosis. Recent advances in analyzing mitophagy in vivo also reveal high rates of steady‐state mitochondrial turnover in diverse cell types, highlighting the intracellular housekeeping role of mitophagy. Defects in mitophagy are associated with various pathological conditions such as neurodegeneration, heart failure, cancer, and aging, further underscoring the biological relevance. Here, we review our current molecular understanding of mitophagy, and its physiological implications, and discuss how multiple mitophagy pathways coordinately modulate mitochondrial fitness and populations.  相似文献   

2.
3.
Glutamate acts on postsynaptic glutamate receptors to mediate excitatory communication between neurons. The discovery that additional presynaptic glutamate receptors can modulate neurotransmitter release has added complexity to the way we view glutamatergic synaptic transmission. Here we review evidence of a physiological role for presynaptic glutamate receptors in neurotransmitter release. We compare the physiological roles of ionotropic and metabotropic glutamate receptors in short- and long-term regulation of synaptic transmission. Furthermore, we discuss the physiological conditions that are necessary for their activation, the source of the glutamate that activates them, their mechanisms of action and their involvement in higher brain function.  相似文献   

4.
Plants, algae, and photosynthetic bacteria experience frequent changes in environment. The ability to survive depends on their capacity to acclimate to such changes. In particular, fluctuations in temperature affect the fluidity of cytoplasmic and thylakoid membranes. The molecular mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the understanding of the functions of the individual genes for fatty acid desaturases in cyanobacteria and plants led to the directed mutagenesis of such genes that altered the membrane fluidity of cytoplasmic and thylakoid membranes. Characterization of the photosynthetic properties of the transformed cyanobacteria and higher plants revealed that lipid unsaturation is essential for protection of the photosynthetic machinery against environmental stresses, such as strong light, salt stress, and high and low temperatures. The unsaturation of fatty acids enhances the repair of the damaged photosystem II complex under stress conditions. In this review, we summarize the knowledge on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, on genes that are involved in acclimation to new sets of environmental conditions, and on the influence of membrane properties on photosynthetic functions.  相似文献   

5.
6.
线粒体在细胞的生命活动过程中承担重要作用,线粒体通过自身质量控制维持线粒体健康.线粒体囊泡作为一种新型的线粒体质量控制机制,通过靶向到不同的细胞器,调控线粒体内氧化/受损蛋白的降解;激活免疫系统,发挥抗原呈递和杀灭细菌的功能,从而维持线粒体以及细胞的稳态平衡.本文就线粒体囊泡的调控机制以及生物学功能的研究进展进行综述.  相似文献   

7.
Regulatory mechanisms and functions of MAP kinase signaling pathways   总被引:2,自引:0,他引:2  
Imajo M  Tsuchiya Y  Nishida E 《IUBMB life》2006,58(5-6):312-317
Mitogen-activated protein kinase (MAPK) pathways play central roles in controlling diverse cellular functions. They are finely regulated by several mechanisms, including scaffolding of their components, and phosphorylation/dephosphorylation and compartmentalization of MAPKs. A number of molecules have been identified as regulators involved in these mechanisms. They modulate the magnitude and the specificity of MAPK signaling, and thereby regulate the wide variety of signaling outputs. Recent studies have identified novel functions of the MAPK signaling pathways. It is becoming clear that strict regulation of the MAPK pathways underlies their manifold functions in numerous biological processes.  相似文献   

8.
Multidrug transporters mediate the extrusion of structurally unrelated drugs from prokaryotic and eukaryotic cells. As a result of this efflux activity, the cytoplasmic drug concentration in the cell is lowered to subtoxic levels and, hence, cells become multidrug resistant. The activity of multidrug transporters interferes with the drug-based control of tumours and infectious pathogenic microorganisms. There is an urgent need to understand the structure-function relationships in multidrug transporters that underlie their drug specificity and transport mechanism. Knowledge about the architecture of drug and modulator binding sites and the link between energy-generating and drug translocating functions of multidrug transporters may allow one to rationally design new drugs that can poison or circumvent the activity of these transport proteins. Furthermore, if one is to inhibit multidrug transporters in human cells, one should know more about their physiological substrates and functions. This review will summarize important new insights into the role that multidrug transporters in general, and P-glycoprotein and its bacterial homologue LmrA in particular, play in the physiology of the cell. In addition, the molecular basis of drug transport by these proteins will be discussed.  相似文献   

9.
Multidrug transporters mediate the extrusion of structurally unrelated drugs from prokaryotic and eukaryotic cells. As a result of this efflux activity, the cytoplasmic drug concentration in the cell is lowered to subtoxic levels and, hence, cells become multidrug resistant. The activity of multidrug transporters interferes with the drug-based control of tumours and infectious pathogenic microorganisms. There is an urgent need to understand the structure-function relationships in multidrug transporters that underlie their drug specificity and transport mechanism. Knowledge about the architecture of drug and modulator binding sites and the link between energy-generating and drug translocating functions of multidrug transporters may allow one to rationally design new drugs that can poison or circumvent the activity of these transport proteins. Furthermore, if one is to inhibit multidrug transporters in human cells, one should know more about their physiological substrates and functions. This review will summarize important new insights into the role that multidrug transporters in general, and P-glycoprotein and its bacterial homologue LmrA in particular, play in the physiology of the cell. In addition, the molecular basis of drug transport by these proteins will be discussed.  相似文献   

10.
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation(LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization,gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin-and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre-and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.  相似文献   

11.
12.
Amadori products (fructosamines)—ubiquitously occurring in nature—are precursors of the toxic and cell damaging ‘advanced glycation endproducts’; thus, it is not surprising that numerous organisms have developed systems to degrade such compounds. The deglycating enzymes differ with respect to their mechanisms as well as to their substrate specificities. Furthermore, different physiological functions are proposed for the different enzymes. The fructosamine 3-kinases of mammals and homologous proteins (fructosamine 3-kinase related proteins), which are common to all taxa, are thought to focus on intracellular repair functions. In contrast, in Bacillus subtilis and Escherichia coli, the cooperative action of a kinase and a deglycase facilitates Amadori degradation. As genes encoding these enzymes are co-transcribed with ABC transporter genes, it is thought that these genes facilitate the utilisation of extracellular Amadori products. Indeed, it has been shown that fructosamines can serve as the sole carbon and nitrogen sources. Here, we provide an overview of known deglycating systems with the emphasis on Amadori product degradation in bacteria.  相似文献   

13.
14.
MiRNAs作为非编码单链RNA分子,具有时空特异性和较高的保守性。近年来,许多实验数据证明,miRNA对细胞基因表达、细胞分化和组织发育等过程有着重要的调控作用,特别是在一些疾病的发生与发展中,miRNAs会异常表达且通过某些机制促进或抑制疾病的恶化。急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)的发生由多种因素造成,主要临床表现为肺泡-毛细血管损伤。在ARDS发病过程中,一些miRNAs表达异常,且通过调控mRNA转录和表达,参与整个发病过程。在ARDS发病过程中明显上调或下调且具有特异性的miRNA分子可能为ARDS的预前及预后提供新的标志物,同时研究其调控机制也为诊疗提供新靶点。  相似文献   

15.
16.
甲基法尼酯在甲壳动物中的生理作用及其机制的研究进展   总被引:1,自引:0,他引:1  
甲基法尼酯是一种类倍半萜烯激素,与昆虫的保幼激素在结构和功能上相似,是重要的内分泌调控因子。MF与甲壳动物的蜕皮、形态建成、渗透压调节、卵巢发育等生理活动的调控密切相关。主要就甲基法尼酯在甲壳动物中的生理功能、分子作用机制及其合成代谢等方面的研究进展进行综述,为进一步深入探讨甲基法尼酯的作用机制和解决虾蟹类养殖实践中的性早熟与亲本发育不良等难题奠定基础。  相似文献   

17.
18.
That smooth muscles dilate and contract rhythmically has been known for a long time and the phenomenon has been studied for nearly as long. However, the causes and effects of smooth muscle oscillation (termed vasomotion) are far from clear. It is thought that vasomotion aids the delivery of oxygen to tissues surrounding capillary beds. On the other hand, unregulated vasomotion might participate in the development and maintenance of pathophysiological states. Nilsson and Aalkjaer review what is known about vasomotion and its consequences.  相似文献   

19.
20.
Data are raeviewed on mitochondrial systems whose functioning in plants diminishes the efficiency of oxidative phosphorylation. The involvement in this process of alternative oxidase, thermogenin-like uncoupling proteins, a 310 kD stress protein, free fatty acids, and the ADP/ATP antiporter is considered. The role of these systems is discussed with regard to thermogenesis, controlled production of reactive oxygen species, and regulation of bioenergetics and metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号