首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
Recent studies have reported elevated expression of miR-181a in patients with non-alcoholic fatty liver disease (NAFLD), suggesting that it may play an important role in liver lipid metabolism and insulin resistance. We aimed to investigate the effect of miR-181a in lipid metabolism and find new treatments for NAFLD. The expression level of miR-181a in NAFLD patient serum and a palmitic acid (PA)-induced NAFLD cell model was examined by Q-PCR. Oil red O staining and triglyceride assays were used to assess lipid accumulation in hepatocytes. Western blotting was used to detect the protein expression levels of peroxisome proliferator-activated receptor-α (PPARα) and the fatty acid β-oxidation-related genes. Direct interactions were validated by dual-luciferase reporter gene assays. MiR-181a expression was significantly upregulated in the serum of NAFLD patients and PA-induced hepatocytes. Inhibition of miR-181a expression resulted in the increased expression of PPARα and its downstream genes, and PA-induced lipid accumulation in hepatocytes was also inhibited. Upregulation of miR-181a resulted in the downregulation of its direct target PPARα and downstream gene expression of PPARα as well as aggravated lipid accumulation in hepatocytes. At the same time, the increased expression of PPARα can offset lipid accumulation in hepatocytes induced by miR-181a mimics. This study demonstrates that reducing the expression of miR-181a may improve lipid metabolism in NAFLD. The downregulation of miR-181a expression can be a therapeutic strategy for NAFLD by modulating its target PPARα.  相似文献   

4.
5.
6.
7.
Autoregulation of the human liver X receptor alpha promoter   总被引:4,自引:0,他引:4       下载免费PDF全文
Previous work has implicated the nuclear receptors liver X receptor alpha (LXR alpha) and LXR beta in the regulation of macrophage gene expression in response to oxidized lipids. Macrophage lipid loading leads to ligand activation of LXRs and to induction of a pathway for cholesterol efflux involving the LXR target genes ABCA1 and apoE. We demonstrate here that autoregulation of the LXR alpha gene is an important component of this lipid-inducible efflux pathway in human macrophages. Oxidized low-density lipoprotein, oxysterols, and synthetic LXR ligands induce expression of LXR alpha mRNA in human monocyte-derived macrophages and human macrophage cell lines but not in murine peritoneal macrophages or cell lines. This is in contrast to peroxisome proliferator-activated receptor gamma (PPAR gamma)-specific ligands, which stimulate LXR alpha expression in both human and murine macrophages. We further demonstrate that LXR and PPAR gamma ligands cooperate to induce LXR alpha expression in human but not murine macrophages. Analysis of the human LXR alpha promoter led to the identification of multiple LXR response elements. Interestingly, the previously identified PPAR response element (PPRE) in the murine LXR alpha gene is not conserved in humans; however, a different PPRE is present in the human LXR 5'-flanking region. These results have implications for cholesterol metabolism in human macrophages and its potential to be regulated by synthetic LXR and/or PPAR gamma ligands. The ability of LXR alpha to regulate its own promoter is likely to be an integral part of the macrophage physiologic response to lipid loading.  相似文献   

8.
Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.  相似文献   

9.
The pathogenesis of non‐alcoholic fatty liver disease (NAFLD) is still not fully understood, and currently, no effective pharmacotherapy is available. Nuclear receptors (NRs) are important biological participants in NAFLD that exhibit great therapeutic potential. Chaihu Shugan powder (CSP) is a traditional Chinese medicine (TCM) formula that has a wide therapeutic spectrum including NAFLD, but the effective components and functional mechanisms of CSP are unclear. We adopted a network pharmacology approach using multiple databases for Gene Ontology (GO) enrichment analysis and the molecular complex detection (MCODE) method for a protein‐protein interaction (PPI) analysis, and we used molecular docking method to screen the NR targets and determine the corresponding CSP components. The screening results were validated through a NAFLD rat model that was used to explain the possible relationship between CSP and NAFLD. Finally, we screened PPARγ, FXR, PPARα, RARα and PPARδ as target genes and quercetin, kaempferol, naringenin, isorhamnetin and nobiletin as target compounds. The five components were detected through high‐performance liquid chromatography‐mass spectrometry (HPLC‐MS), the results of which aligned with the docking experiments of PPARγ, PPARα and PPARδ. After CSP intervention, the NAFLD rat model showed ameliorated effects in terms of bodyweight, hepatic histopathology, and serum and liver lipids, and the mRNA levels of PPARγ, FXR, PPARα and RARα were significantly changed. The results from this study indicate that CSP exhibits healing effects in an NAFLD model and that the network pharmacology approach to screening NR targets and determining the corresponding CSP components is a practical strategy for explaining the mechanism by which CSP ameliorates NAFLD.  相似文献   

10.
11.
The increased uptake and storage of lipids in the liver are important features of steatotic liver diseases. The fatty acid translocase/scavenger receptor cluster of differentiation (CD)36 facilitates the hepatic uptake of lipids. We investigated if RRR-α-tocopherol (αT) alone or in combination with atorvastatin (ATV) is capable of preventing hepatic lipid accumulation via down-regulation of CD36. To this end, Dunkin Hartley guinea pigs were fed a control diet (5% fat); or a high-fat control diet (21% fat, 0.15% cholesterol); or a high-fat control diet fortified with αT (250 mg/kg diet), ATV (300 mg/kg diet) or both ATV+αT for 6 weeks. Hepatic triacylglycerols, hepatic protein and mRNA expression of CD36 as well as the mRNA expression of the controlling nuclear receptors LXRα, PXR and PPARγ were determined. Animals fed the high-fat control diet accumulated significantly more triacylglycerols in the liver than control animals. This was significantly reduced by ATV and numerically by αT and ATV+αT. Hepatic CD36 protein concentrations were significantly higher in the high-fat than in the control group, and both αT and ATV reduced CD36 expression to the level observed in the control group. However, no synergistic effect of the combined treatment was observed. Neither CD36 mRNA nor that of the nuclear receptors (LXRα, PXR and PPARγ) differed between groups, suggesting a posttranslational regulatory mechanism. Our results indicate that orally administered ATV and αT individually, but not synergistically, prevent diet-induced lipid accumulation in the liver of guinea pigs by down-regulation of hepatic CD36 protein.  相似文献   

12.
13.
14.
Cholesterol 7α-hydroxylase (cyp7a) mediates cholesterol elimination in the liver by catalyzing the first and rate-limiting step in the conversion of cholesterol into bile acids. Peroxisome proliferator-activated receptor α (PPARα; NR1C1) and liver X receptor α (LXRα; NR1H3) are two nuclear receptors that stimulate the murine Cyp7a1 gene. Here we report that co-expression of PPARα and LXRα in hepatoma cells abolishes the stimulation of Cyp7a1 gene promoter in response to their respective agonists. PPARα and LXRα form an atypical heterodimer that binds to two directly adjacent hexameric sequences localized within overlapping PPARα and LXRα response elements (termed Site I), antagonizing the interaction of PPARα:retinoid X receptor α (RXRα) or RXRα:LXRα with the Cyp7a1 gene promoter. Mutations within either hexameric sequences that specifically abolished LXRα:PPARα heterodimer binding to the murine Cyp7a1 Site I also relieved promoter inhibition. The LXRα:PPARα heterodimer may be important in coordinating the expression of genes that encode proteins involved in metabolism of fats and cholesterol.  相似文献   

15.
16.
The nuclear xenobiotic receptor PXR is activated by a wide variety of clinically used drugs and serves as a master regulator of drug metabolism and excretion gene expression in mammals. St. John's wort is used widely in Europe and the United States to treat depression. This unregulated herbal remedy leads to dangerous drug-drug interactions, however, in patients taking oral contraceptives, antivirals, or immunosuppressants. Such interactions are caused by the activation of the human PXR by hyperforin, the psychoactive agent in St. John's wort. In this study, we show that hyperforin induces the expression of numerous drug metabolism and excretion genes in primary human hepatocytes. We present the 2.1 A crystal structure of hyperforin in complex with the ligand binding domain of human PXR. Hyperforin induces conformational changes in PXR's ligand binding pocket relative to structures of human PXR elucidated previously and increases the size of the pocket by 250 A(3). We find that the mutation of individual aromatic residues within the ligand binding cavity changes PXR's response to particular ligands. Taken together, these results demonstrate that PXR employs structural flexibility to expand the chemical space it samples and that the mutation of specific residues within the ligand binding pocket of PXR tunes the receptor's response to ligands.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号