首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosphingolipids (GSLs) accumulate in cholesterol-enriched cell membrane domains and provide receptors for protein ligands. Lipid-based “aglycone” interactions can influence GSL carbohydrate epitope presentation. To evaluate this relationship, Verotoxin binding its receptor GSL, globotriaosyl ceramide (Gb3), was analyzed in simple GSL/cholesterol, detergent-resistant membrane vesicles by equilibrium density gradient centrifugation. Vesicles separated into two Gb3/cholesterol-containing populations. The lighter, minor fraction (<5% total GSL), bound VT1, VT2, IgG/IgM mAb anti-Gb3, HIVgp120 or Bandeiraea simplicifolia lectin. Only IgM anti-Gb3, more tolerant of carbohydrate modification, bound both vesicle fractions. Post-embedding cryo-immuno-EM confirmed these results. This appears to be a general GSL-cholesterol property, because similar receptor-inactive vesicles were separated for other GSL-protein ligand systems; cholera toxin (CTx)-GM1, HIVgp120-galactosyl ceramide/sulfatide. Inclusion of galactosyl or glucosyl ceramide (GalCer and GlcCer) rendered VT1-unreactive Gb3/cholesterol vesicles, VT1-reactive. We found GalCer and GlcCer bind Gb3, suggesting GSL-GSL interaction can counter cholesterol masking of Gb3. The similar separation of Vero cell membrane-derived vesicles into minor “binding,” and major “non-binding” fractions when probed with VT1, CTx, or anti-SSEA4 (a human GSL stem cell marker), demonstrates potential physiological relevance. Cell membrane GSL masking was cholesterol- and actin-dependent. Cholesterol depletion of Vero and HeLa cells enabled differential VT1B subunit labeling of “available” and “cholesterol-masked” plasma membrane Gb3 pools by fluorescence microscopy. Thus, the model GSL/cholesterol vesicle studies predicted two distinct membrane GSL formats, which were demonstrated within the plasma membrane of cultured cells. Cholesterol masking of most cell membrane GSLs may impinge many GSL receptor functions.  相似文献   

2.
3.
The hepatopancreas of oyster, Crassostrea virginica, was found to contain two unique glycosphingolipid (GSL) cleaving enzymes, ceramide glycanase (CGase) and ceramidase. These two enzymes were found to be tightly associated together through the consecutive purification steps including gel filtration, hydrophobic interaction and cation-exchange chromatographies. They were separated only by preparatory SDS-PAGE. The purified CGase was found to have a molecular mass of 52 kDa and pH optimum of 3.2–3.3. This enzyme prefers to hydrolyze the acidic GSLs, II3SO3LacCer and gangliosides over the neutral GSLs. Oyster ceramidase was found to have a molecular mass of 88 kDa and pH optimum of 4–4.5. Since oyster ceramidase greatly prefers ceramides with C6 to C8 fatty acids, C6-ceramide (N-hexanoyl-D-sphingosine) was used as the substrate for its purification and characterization. The oyster acid ceramidase also catalyzed the synthesis of ceramide from a sphingosine and a fatty acid. For the synthesis, C16 and C18 fatty acids were the best precursors. The amino acid sequences of the two cyanogenbromide peptides derived from the purified ceramidase were found to have similarities to those of several neutral and alkaline ceramidases reported. The tight association of CGase and ceramidase may indicate that CGase in oyster hepatopancreas acts as a vehicle to release ceramide from GSLs for subsequent generation of sphingosines and fatty acids by ceramidase to serve as signaling factors and energy source.  相似文献   

4.
Sphingomonas spp are phylogenetically placed in the α-4 subclass of Proteobacteria. They have glycosphingolipids (GSL) in their membranes instead of lipopolysaccharide (LPS) as in other Gram-negative bacteria. S. paucimobilis, the type species of the genus, has GSL-1, which contains only glucuronic acid (GlcA) as a sugar moiety, and GSL-4A, which contains a tetrasaccharide including GlcA. GSL-1 and GSL-4A form the outer membrane of S. paucimobilis with outer membrane proteins and phospholipids. In the outer membrane, GSLs are assumed to locate and function as does the LPS of other Gram-negative bacteria. Sphingomonas spp closely related to the type species contain both GSL-1 and the oligosaccharide-type GSL such as GSL-4A, but other Sphingomonas spp and other genera in the α-4 subclass of Proteobacteria contain only GSL-1. Structural variations of fatty acids and dihydrosphingosines in the GSL-1 are presented. Received 19 April 1999/ Accepted in revised form 18 June 1999  相似文献   

5.
The iminosugar N-(5′-adamantane-1′-yl-methoxy)-pentyl-1-deoxynoijirimycin (AMP-DNM), an inhibitor of glycosphingolipid (GSL) biosynthesis is known to ameliorate diabetes, insulin sensitivity and to prevent liver steatosis in ob/ob mice. Thus far the effect of GSL synthesis inhibition on pre-existing NASH has not yet been assessed. To investigate it, LDLR(−/−) mice were kept on a western-type diet for 12 weeks to induce NASH. Next, the diet was continued for 6 weeks in presence or not of AMP-DNM in the diet. AMP-DNM treated mice showed less liver steatosis, inflammation and fibrosis. Induction of fatty acid beta-oxydation was observed, as well as a reduction of plasma lipids. Our study demonstrates that AMP-DNM treatment is able to significantly correct pre-existing NASH, suggesting that inhibiting GSL synthesis may represent a novel strategy for the treatment of this pathology.  相似文献   

6.
We compared the lateral structure of giant unilamellar vesicles (GUVs) composed of three pseudo binary mixtures of different glycosphingolipid (GSL), i.e. sulfatide, asialo-GM1 or GM1, with POPC. These sphingolipids possess similar hydrophobic residues but differ in the size and charge of their polar head group. Fluorescence microscopy experiments using LAURDAN and DiIC18 show coexistence of micron sized domains in a molar fraction range that depends on the nature of the GSLs. In all cases, experiments with LAURDAN show that the membrane lateral structure resembles the coexistence of solid ordered and liquid disordered phases. Notably, the overall extent of hydration measured by LAURDAN between the solid ordered and liquid disordered membrane regions show marked similarities and are independent of the size of the GSL polar head group. In addition, the maximum amount of GSL incorporated in the POPC bilayer exhibits a strong dependence on the size of the GSL polar head group following the order sulfatide > asialo-GM1 > GM1. This observation is in full harmony with previous experiments and theoretical predictions for mixtures of these GSL with glycerophospholipids. Finally, compared with previous results reported in GUVs composed of mixtures of POPC with the sphingolipids cerebroside and ceramide, we observed distinctive curvature effects at particular molar fraction regimes in the different mixtures. This suggests a pronounced effect of these GSL on the spontaneous curvature of the bilayer. This observation may be relevant in a biological context, particularly in connection with the highly curved structures found in neural cells.  相似文献   

7.
Glycosphingolipid (GSL) fatty acid strictly regulates verotoxin 1 (VT1) and the HIV adhesin, gp120 binding to globotriaosyl ceramide within Gb(3)/cholesterol detergent resistant membrane (DRM) vesicle constructs and in Gb(3) water-air interface monolayers in a similar manner. VT2 bound Gb(3)/cholesterol vesicles irrespective of fatty acid composition, but VT1 bound neither C18 nor C20Gb(3)vesicles. C18/C20Gb(3) were dominant negative in mixed Gb(3) fatty acid isoform vesicles, but including C24:1Gb(3) gave maximal binding. VT1 bound C18Gb(3) vesicles after cholesterol removal, but C20Gb(3)vesicles required sphingomyelin in addition for binding. HIV-1gp120 also bound C16, C22, and C24, but neither C18 nor C20Gb(3) vesicles. C18 and C20Gb(3) were, in mixtures without C24:1Gb(3), dominant negative for gp120 vesicle binding. Gp120/VT1bound C18 and C24:1Gb(3) mixtures, although neither isoform bound alone. Monolayer surface pressure measurement showed VT1, but not VT2, bound Gb(3) at cellular DRM surface pressures, and confirmed loss of VT1 and gp120 (but not VT2) specific C18Gb(3) binding. We conclude fatty-acid mediated fluidity within simple model GSL/cholesterol DRM can selectively regulate GSL carbohydrate-ligand binding.  相似文献   

8.
The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air–water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may : i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.  相似文献   

9.
Changes in lipid and fatty acid composition of pine needle chloroplasts were determined upon transfer of the trees from outside (-5°C) to 32°C. Within 7 1/2 hours after transfer, conversion of a portion of digalactosyldiglyceride into monogalactosyl diglyceride was observed. This portion consisted of a conjugate with extra long chain fatty acids (cerotic acid, 26: 0, and C26-cyclo-propane fatty acid). Only minor further changes in lipid and fatty acid composition were observed. Dehardening of the needles occurred within the same period. The data support the hypothesis that the degalactosidation reaction specifically depends on the fatty acid composition. The extra long chain fatty acids may link different sub-units of the chloroplasts and may contribute to an additional layer of H-bonded water on the membrane surface because of the increased exposure of the galactose groups.  相似文献   

10.
N-Parinaroylceramides and -glucocerebrosides were synthesized and characterized. These fluorescent glycolipids were found to be nonperturbing membrane lipid probes, which partitioned preferentially into fluid-phase phosphatidylcholine (PC) in liposomes containing both fluid and solid-phase PC. N-Parinaroylglucocerebroside, parinaroyl-PC, and free parinaric acid were used to analyze the motion and distribution of glucocerebroside and ganglioside GM1 in liposomes composed of these glycosphingolipids (GSL) and 1-stearoyl-2-oleoyl-PC (SOPC). Steady-state fluorescence anisotropy of these probes indicated that the neutral glucocerebroside formed solid-phase domains in SOPC liposomes; these domains contained little or no PC. In contrast, the negatively charged ganglioside GM1 was miscible with fluid-phase PC. Incorporation of GM1 into SOPC liposomes resulted in an increase in the transition temperature of the mixture; no transition was observed in either of the pure GSL used over the temperature range from 5 to 70 degrees C. These data indicate that the glucocerebroside probes may be specific for sphingolipid domains in mixed PC/GSL membranes.  相似文献   

11.
The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air-water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may: i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.  相似文献   

12.
  • 1.1. Weanling rats were fed diets differing in fatty acid composition to determine if changes induced in cardiac mitochondrial membrane structural components alter the sensitivity of mitochondrial ATPase to inhibition by oligomycin and stimulation by 2,4-dinitrophenol.
  • 2.2. Mitochondrial ATPase assayed in situ within the mitochondrial membrane isolated from animals fed diets higher in fatty acids of longer chain length, exhibited greater oligomycin sensitivity and lower 2,4-dinitrophenol-induced stimulation.
  • 3.3. Concomitant diet-induced changes occur in the fatty acid, composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin, increasing overall length of fatty-acyl tails in the membrane phospholipids.
  • 4.4. Diet fat mediated alterations in oligomycin sensitivity of mitochondrial ATPase and membrane fatty acid chain length suggest that vivo changes in thickness of the lipid bilayer may alter mitochindrial ATPase functions.
  • 5.5. The present study extends the concept that dietary fat affects mitochondrial membrane structure and function by demonstrating that the membrane-dependent sensitivity of mitochondrial ATPase to inhibitors and stimulators may be modulated by dietary fat.
  相似文献   

13.
The regulation of glycosphingolipid (GSL) synthesis in culture by fusion-competent (E63) myoblasts and fusion-defective (fu-1) cells was examined. Upon reaching confluency E63 cells fused to form multinucleated myotubes and demonstrated many characteristics of developing skeletal muscle including induction of creatine kinase activity and a shift in creatine kinase isozymes to the MM isoform. The fu-1 cells displayed none of these characteristics, despite the fact that both cells were cloned from the same parental myoblast line (rat L8). There was a transient increase in the synthesis of total neutral GSLs by E63 cells at the time of membrane fusion. In contrast, neutral GSL synthesis by fu-1 cells gradually decreased with time in culture. The major GSLs synthesized by both cell types were lactosylceramide and ganghoside GM3, with more complex structures being observed with prolonged time in culture. Several glycosyltransferase activities were assayed at varying times in culture. Generally, the changes in activities fell into three groups. One group was maximally activated at the end of the culture period (GalT-3, GalNAcT-1 and GalT-6). Another group was maximally activated during the time of active membrane fusion (GlcT and SAT-1). A third group was maximally activated at the time of cell contact and the beginning of membrane fusion (GlcNAcT-1 and GalT-2). In terms of the times of maximal activation there were few differences between E63 and fu-1 cells, with one notable exception. The activity of GalT-2 (lactosylceramide synthase) in E63 cells increased dramatically upon contact and the beginning of membrane fusion, whereas there were no changes in GalT-2 activity in fu-1 cells during time in culture. These results support our hypothesis that membrane glycosphingolipids play an important role in the differentiation of skeletal muscle cells.Abbreviations GSL glycosphingolipid - CK creatine kinase - HPTLC high performance thin layer chromatography - PMSF phenylmethylsulfonyl fluoride - CTH ceramide trihexoside (GbOse3Cer) - GlcCer glycosylceramide - LacC N-acetylglucosamine - NeuNAc N-acetylneuraminic acid (sialic acid)  相似文献   

14.
Although HIV uses CD4 and coreceptors (CCR5 and CXCR4) for productive infection of T cells, glycosphingolipids (GSL) may play ancillary roles in lymphoid and non-lymphoid cells. Interactions of the HIV Envelope Glycoprotein (Env) with GSL may help HIV in various steps of its pathogenesis. Physical-chemical aspects of the interactions between HIV Env and GSL leading to CD4-dependent entry into lymphocytes, the role of GSL in HIV transcytosis, and CD4-independent entry into non-lymphoid cells are reviewed. An overview of signaling properties of HIV receptors is provided with some speculation on how GSL may play a role in these events by virtue of being in membrane rafts. Finally, we summarize how interactions between HIV and coreceptors leading to signaling and/or fusion can be analyzed by the use of various tyrosine kinase and cytoskeletal inhibitors. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both pro-mitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

16.
Suppression of fatty acid absorption is one goal to fight obesity. However, the responsible molecular mechanism is poorly understood. Aim of the present study was the search for the key regulator of the overall fatty acid absorption mechanism and its pharmaceutical modulation. As experimental tool we employed the polarized human intestinal tumor derived cell line CaCo2. Here we showed that influx of fatty acids is mediated by an apical heterotetrameric plasma membrane protein complex of which the calcium-independent membrane phospholipase A2 (iPLA2ß) is one constituent. The newly synthesized bile acid-phospholipid conjugate ursodeoxycholate-lysophosphatidylethanolamide (UDCA-LPE) blocked iPLA2ß, which structurally disrupted the fatty acid-uptake complex. Furthermore, the inhibition of iPLA2ß lead to reduction of cytosolic lysophosphatidylcholine (LPC) production which suppressed p-JNK1, as a central regulator of metabolism. In a concerted action low p-JNK1 levels prohibited synthesis of the members of the fatty acid uptake complex as well as of apolipoprotein B and the connected members of the basolateral vesicular chylomicron excretion machinery, thereby inhibiting cellular lipid excretion. The basolateral chylomicron release was shown to determine the overall fatty acid-absorption capacity as rate limiting step, whereas apical uptake replenishes the cellular stores, enabling continuous transcellular movement of fatty acids. In conclusion, the UDCA-LPE mediated inhibition of p-JNK1 represents a powerful tool to control intestinal absorption of fatty acids and, thus may be employed as a drug to treat obesity.  相似文献   

17.
《Anaerobe》2001,7(4):227-236
The cellulolytic bacterium, Eubacterium cellulosolvens, altered its cytoplasmic membrane protein composition in response to growth on specific energy substrates. Electrophoresis profiles obtained from membrane protein fractions of cellulose-grown cells were different from that obtained from cells cultivated with other carbohydrates, such as cellobiose or glucose. In addition, [3H]palmitic acid labelling of cellulose-grown E. cellulosolvens revealed two lipoproteins that were not detected in glucose- or cellobiose-grown cultures. These lipoproteins partitioned with the membrane fraction, indicating their association with the cytoplasmic membrane. Proteinase K treatment of whole cells further suggested that these lipoproteins were exposed to the surface of the cell envelope. These membrane proteins and lipoproteins appear to be under some substrate-specific regulatory control with distinct, but as yet undetermined, roles in cellulose utilization. In addition, cellulose-grown E. cellulosolvens was found to posses a higher ratio of oleic acid (C18:1) to palmitic acid (C16:0) than cells cultivated on soluble carbohydrates. This change in the ratio of unsaturated to saturated fatty acids was consistent with a comparative increase of membrane fluidity. Further analysis of this shift in the fatty acid profile revealed a correlation with the appearance of protruberances on the cell surface. Such a shift of fatty acid composition may indicate that the assembly and function of proteins for cellulose utilization necessitates an increase of the membrane fluidity.  相似文献   

18.
Intact human sperm incorporated radiolabelled fatty acids into membrane phospholipids when incubated in medium containing bovine serum albumin as a fatty acid carrier. The polyunsturated fatty acids were preferentially incorporated into the plasmalogen fraction of phospholipid. Uptake was linear with time over 2 hr; at this time sufficient label was available to determine the loss of fatty acids under conditions of spontaneous lipid peroxidation. Loss of the various phospholipid types, the loss of the various fatty acids from these phospholipids, and the overall loss of fatty acids were all first order. The loss of saturated fatty acids was slow with first order rate constant k1 = 0.003 hr?1; for the polyunsaturated fatty acids, arachidonic and docosahexaenoic acids, k1 = 0.145 and 0.162 hr?1, respectively. The rate of loss of fatty acids from the various phospholipid types was dependent on the type, with loss from phosphatidylethanolamine being the most rapid. Among the phospholipid types, phosphatidylethanolamine was lost at the greatest rate. Analysis of fatty acid loss through oxidation products was determined for radiolabelled arachidonic acid. Under conditions of spontaneous lipid peroxidation at 37°C under air in the absence of albumin, free arachidonic acid was found in the medium, along with minor amounts of hydroxylated derivative. All the hydroperoxy fatty acid remained in the cells. In the presence of albumin, all the hydroperoxy fatty acid was found in the supernatant bound to albumin; none could be detected in the cells. Albumin is known as a very potent inhibitor of lipid peroxidation in sperm; its action may be explained, based on these results, as binding the damaging hydroperoxy fatty acids. These results also indicate that a phospholipase A2 may act in peroxidative defense by excising a hydroperoxy acyl group from phospholipid and providing the hydroperoxy fatty acid product as substrate to glutathione peroxidase. This formulation targets hydroperoxy fatty acid as a key intermediate in peroxidative degradation. © 1995 wiley-Liss, Inc.  相似文献   

19.
A hypothesis is presented that glycosphingolipids of circulating erythrocytes are membrane-packing substances providing for an energetically cheap carbohydrate protective coat at the cell surface. The glycosphingolipids should cover the membrane surface not occupied by functional glycoproteins. This role is envisaged for the globo series of glycosphingolipids which are Pk and P antigens of human blood. Glycosphingolipids of the neolacto series terminated with non-informative A, B, H. Lewis, P1 antigenic structures as well as with sialic acid residues should serve the same purpose. These carbohydrate structures may be also used for conferring biological inertness on otherwise functionally active carbohydrate structures and provide protection for circulatory and membrane glycoproteins from proteolysis, denaturation and recognition of potentially antigenic sites of protein moieties by the immunosurveillance system of the body. At the external body surface the same carbohydrate structures may protect cells from the action of pathogenic microorganisms and other environmental factors. The roles of the above mentioned carbohydrate sequences on glycosphingolipids and glycoproteins in the development, tumorigenesis and evolution of blood group polymorphism are discussed.Abbreviations GP glycoprotein - GSL glycosphingolipid - GC glycoconjugate  相似文献   

20.
Transport of long-chain fatty acids across the cell membrane has long been thought to occur by passive diffusion. However, in recent years there has been a fundamental shift in understanding, and it is now generally recognized that fatty acids cross the cell membrane via a protein-mediated mechanism. Membrane-associated fatty acid-binding proteins (‘fatty acid transporters’) not only facilitate but also regulate cellular fatty acid uptake, for instance through their inducible rapid (and reversible) translocation from intracellular storage pools to the cell membrane. A number of fatty acid transporters have been identified, including CD36, plasma membrane-associated fatty acid-binding protein (FABPpm), and a family of fatty acid transport proteins (FATP1–6). Fatty acid transporters are also implicated in metabolic disease, such as insulin resistance and type-2 diabetes. In this report we briefly review current understanding of the mechanism of transmembrane fatty acid transport, and the function of fatty acid transporters in healthy cardiac and skeletal muscle, and in insulin resistance/type-2 diabetes. Fatty acid transporters hold promise as a future target to rectify lipid fluxes in the body and regain metabolic homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号