首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The solid-liquid phase behaviour of oleanolic acid (OLA)/stearyl stearate (SS) was investigated by differential scanning calorimetry and polarizing optical microscopy. A eutectic type diagram, with the eutectic composition close to pure SS was obtained. Complementary studies by NMR, X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy were performed. A mutual influence was detected in mixtures: the low melting form of SS is favoured at low OLA molar fractions (XOLA) and spherulitic structures appear at high XOLA and high temperature. Additionally, H-bonding between OLA carbonyl groups increases in the presence of SS. The study of OLA/SS by the Langmuir method and Brewster angle microscopy revealed the organization at the air-water interface: OLA interacts with water in the first layer, while SS is completely segregated to the upper layer for XOLA > 0.3, and it distributes in the first and upper layers for XOLA < 0.3.  相似文献   

2.
《Anaerobe》2009,15(3):65-73
Highest antimicrobial activity of peptide ST4SA (51,200 AU/mL) was recorded after 14 h of growth in MRS broth with optimal production at pH 6.0 or 6.5. Growth of strain ST4SA in the presence of tryptone, yeast extract, or a combination of the two, yielded 102,400 AU/mL. An increase in production of peptide ST4SA to 102,400 AU/mL was recorded in the presence of 20.0 g/L fructose, but decreased to 25,600 AU/mL in the presence of lactose (20.0 g/L) or mannose (20.0 g/L) as sole carbon source. Lower activity (25,600 AU/mL) was recorded when 2.0 g/L K2HPO4 was replaced by 2.0 g/L KH2PO4 in MRS broth. An increase of K2HPO4 to 10.0 g/L and 20.0 g/L resulted in higher activity (102,400 AU/mL). Addition of glycerol to MRS broth had a negative effect on peptide ST4SA production. Production of peptide ST4SA required the presence of magnesium sulphate, manganese sulphate and 5.0 g/L sodium acetate. Exclusion of tri-ammonium citrate from the medium resulted in reduction of activity to 3,200 AU/mL. Maximum activity (102,400 AU/mL) was recorded in MRS supplemented with 1.0 ppm Vit. C, DL-6,8-thioctic acid or thiamine, respectively. Growth of Listeria ivanovii susbp. ivanovii ATCC 19119 in the presence of peptide ST4SA (12,800 AU/mL) resulted in 99% cell lysis after 18 h. Improved production of peptide ST4SA was recorded in MRS broth (Biolab) pre-treated with Amberlite XAD-1180. Precipitation with ammonium sulphate, followed by gel filtration chromatography, yielded the highest level of peptide ST4SA. This paper describes the partially deproteination of growth medium to facilitate peptide ST4SA purification.  相似文献   

3.
The binary phase behavior of purified 1,3-dilauroyl-2-stearoyl-sn-glycerol (LSL) and 1,2-dilauroyl-3-stearoyl-sn-glycerol (LLS) was investigated at a slow (0.1 °C/min) and a relatively fast (3.0 °C/min) cooling rate in terms of melting and crystallization, polymorphism, solid fat content (SFC), hardness and microstructure. Much of the behavior of the system is explained by its polymorphism and the influence of thermal processing. The α-form and the β′-form of a double chain length structure were detected in the mixtures cooled at 3.0 °C/min, whereas only the β′-form was detected in those cooled at 0.1 °C/min. X-ray diffraction data as well as thermodynamic data propose that the most stable phases are promoted by the symmetrical LSL. The measured trends in structural characteristics, thermal properties, SFC, relative hardness and microstructure delimit three groups of mixtures which imply a competition between the stabilizing effect of LSL and disordering introduced by kinetic effects: (a) LLS-rich mixtures with LSL molar fractions (XLSL) less than 0.3, (b) mixtures with XLSL clustered around 0.5 and (c) LSL-rich mixtures with XLSL  0.7. The balance between ordering and kinetic effects determines the polymorphism of the mixtures, which in turn determines the behavior of the LSL/LLS system. The kinetic phase diagram of the LSL/LLS binary system constructed using heating differential scanning calorimetry thermograms displayed a singularity at the 0.5LSL molar fraction which delimits two distinct behaviors: eutectic behavior in one region and monotectic behavior in the other. The molecular interactions, as depicted by a non-ideality parameter of mixing obtained from a thermodynamic model based on the Hildebrand equation, suggests an almost ideal mixing behavior and a moderate tendency to the formation of unlike-pairs in the liquid state.  相似文献   

4.
Continuous anaerobic fermentations were performed in a novel external-recycle, biofilm reactor using d-glucose and CO2 as carbon substrates. Succinic acid (SA) yields were found to be an increasing function of glucose consumption with the succinic acid to acetic acid ratio increasing from 2.4 g g−1 at a glucose consumption of 10 g L−1, to 5.7 g g−1 at a glucose consumption of 50 g L−1. The formic acid to acetic acid ratio decreased from an equimolar value (0.77 g g−1) at a glucose consumption of 10 g L−1 to a value close to zero at 50 g L−1. The highest SA yield on glucose and highest SA titre obtained were 0.91 g g−1 and 48.5 g L−1 respectively. Metabolic flux analysis based on the established C3 and C4 metabolic pathways of Actinobacillus succinogenes revealed that the increase in the succinate to acetate ratio could not be attributed to the decrease in formic acid and that an additional source of NADH was present. The fraction of unaccounted NADH increased with glucose consumption, suggesting that additional reducing power is present in the medium or is provided by the activation of an alternative metabolic pathway.  相似文献   

5.
Feverfew (Tanacetum parthenium) (TP) is a valuable medicinal plant from Asteraceae family with various pharmaceutical and therapeutic properties. A pot experiment was conducted to evaluate the effect of salicylic acid (SA) on the physiological and morphological responses of TP under salinity stress. Salinity was induced by NaCl and CaCl2 (2:1) at 30, 60, 90, 120, 150 and 180 mM levels. SA was applied as foliar application at 0, 200 and 300 ppm concentrations. Plant height, leaf and shoot number, fresh and dry weight and essential oil, starch, sugar, protein, proline, catalase (CAT), peroxidase (POD), and ascorbic peroxidase (APX) contents were as measured morpho-physiological traits. The results showed that SA significantly (P  0.05) improved the measured traits and caused higher tolerance in TP plants under salinity stress. The essential oil content increased with increasing the salinity level up to 90 mM, which was more significant when combined with SA application. All of the measured traits except proline content, antioxidant enzymes, essential oil and sugar decreased at high salinity levels.  相似文献   

6.
《Process Biochemistry》2004,39(11):1341-1345
Batch fermentation of glucose to gluconic acid was conducted using Aspergillus niger under growth and non-growth conditions using pure oxygen and air as a source of oxygen for the fermentation in 2 and 5 l stirred tank reactors (batch reactor). Production of gluconic acid under growth conditions was conducted in a 5 l batch reactor. Production and growth rates were higher during the period of supplying pure oxygen than that during supplying air, and the substrate consumption rate was almost constant. For the production of gluconic acid under non-growth conditions, conducted in the 2 l batch reactor, the effect of the pure oxygen flow rate and the biomass concentration on the gluconic acid production was investigated and an empirical equation suggested to show the dependence of the production rate rp on the biomass concentration Cx and oxygen flow rate Q, at constant operating conditions (30 °C, 300 rpm and pH 5.5). Biomass concentration had a positive effect on the production rate rp, and the effect of Q on rp was positive at high biomass concentrations.  相似文献   

7.
The separate or combined effects of Pichia membranaefaciens and salicylic acid (SA) on the control of blue and green mold decay in citrus fruits were investigated. Results indicate that combining P. membranaefaciens (1 × 108 CFU ml−1) with SA (10 μg ml−1) either in a point-inoculated or dipped treatment provided a more effective control of blue and green mold than separately applying yeast or SA. SA (10 μg ml−1) did not significantly affect P. membranaefaciens growth in vitro but slightly increased the yeast population in fruit wounds. P. membranaefaciens plus SA effectively enhanced the phenylalanine ammonia-lyase, peroxidase, polyphenoloxidase, chitinase, and β-1,3-glucanase activities and stimulated the synthesis of phenolic compounds. The combined treatment did not impair quality parameters such as weight loss or titratable acidity, but resulted in low average natural infection incidence and increased total soluble solids and ascorbic acid contents in citrus fruits after 14 d at 20 °C.  相似文献   

8.
The effects of bio-regulators salicylic acid (SA) and 24-epibrassinolide (EBL) as seed soaking treatment on the growth traits, content of photosynthetic pigments, proline, relative water content (RWC), electrolyte leakage percent (EC%), antioxidative enzymes and leaf anatomy of Zea mays L. seedlings grown under 60 or 120 mM NaCl saline stress were studied. A greenhouse experiment was performed in a completely randomized design with nine treatments [control (treated with tap water); 60 mM NaCl; 120 mM NaCl; 10 4 M SA; 60 mM NaCl + 10 4 M SA; 120 mM NaCl + 10 4 M SA; 10 μM EBL; 60 mM NaCl + 10 μMEBL or 120 mM NaCl + 10 μM EBL] each with four replicates. The results indicated that NaCl stress significantly reduced plant growth traits, leaf photosynthetic pigment, soluble sugars, RWC%, and activities of catalase (CAT), peroxidase (POX) as well as leaf anatomy. However, the application of SA or EBL mitigated the toxic effects of NaCl stress on maize seedlings and considerably improved growth traits, photosynthetic pigments, proline, RWC%, CAT and POX enzyme activities as well as leaf anatomy. This study highlights the potential ameliorative effects of SA or EBL in mitigating the phytotoxicity of NaCl stress in seeds and growing seedlings.  相似文献   

9.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl.  相似文献   

10.
Succinic acid (SA) was produced from Actinobacillus succinogenes with high cell density by continuous fermentation using fibrous bed bioreactor (FBB). The effects of feeding glucose concentration, dilution rate, and pH on continuous production of SA were examined to achieve an efficient and economical bioprocess. The optimum feeding glucose concentration, dilution rate, and pH were 80 g/L, 0.05 1/h, and 6.0–6.5, respectively. A SA concentration of 55.3 ± 0.8 g/L, productivity of 2.77 ± 0.04 g/L/h, and yield of 0.8 ± 0.02 g/g were obtained, and the continuous fermentation exhibited long-term stability for as long as 18 days (440 h) with no obvious fluctuations in both SA and biomass levels. The Jerusalimsky equation for the specific rate of SA production presented the inhibition phenomenon of the product, demonstrating that 60 g/L SA might be a critical concentration in this continuous FBB system. The results obtained could be beneficial for future fermentor designs and improvements in SA production.  相似文献   

11.
General and spinal anesthesia are used extensively in orthopedic surgery. However, these methods of anesthesia may result in different amounts of oxygen being delivered to the patient. Ischemia/reperfusion injury after release of the tourniquet initiates free radical-mediated oxidative stress. F2-isoprostanes are reliable markers of in vivo lipid peroxidation. However, under conditions of high oxygen tension, isofurans are formed. We aimed to compare plasma isofurans and F2-isoprostanes in spinal versus general anesthesia in patients undergoing knee-replacement surgery in a randomized, blinded study. Thirty-nine patients were randomized to spinal (SA; n = 19) or general anesthesia (GA; n = 20). Blood was collected before anesthesia, and a tourniquet was then applied to the limb during surgery. After release of the tourniquet, blood samples were collected at 30 min, 2 h, and 24 h for measurement of plasma F2-isoprostanes and isofurans by gas chromatography–mass spectrometry. The two groups were comparable in age and body mass index. Plasma F2-isoprostanes were significantly lower in the GA patients compared with the SA patients (p = 0.045). In contrast, the GA patients had significantly elevated plasma isofurans (p = 0.032). Increased isofurans during GA compared with SA are likely to reflect increased oxidative stress due to elevated oxygen concentrations during GA. Further studies are required to assess the implications of these findings on perioperative outcomes.  相似文献   

12.
A solvent engineering strategy was applied to the lipase-catalyzed methanolysis of triacylglycerols for biodiesel production. The effect of different pure organic solvents and co-solvent mixtures on the methanolysis was compared. The substrate conversions in the co-solvent mixtures were all higher than those of the corresponding pure organic solvents. Further study showed that addition of co-solvent decreased the values of |log Pinterface  log Psubstrate| and thus led to a faster reaction. The more the values of |log Pinterface  log Psubstrate| decreased, the faster the reaction proceeded and the higher the conversion attained. Different co-solvent ratio was further investigated. The co-solvent mixture of 25% t-pentanol:75% isooctane (v/v) was optimal, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. There was no obvious loss in lipase activity even after being repeatedly used for 60 cycles (720 h) with this co-solvent mixture as reaction medium. Other lipases and lipase combinations can also catalyze methanolysis in this co-solvent mixture. Furthermore, other vegetable oils were also explored for biodiesel production in this co-solvent mixture and it had been found that this co-solvent mixture media has extensive applicability.  相似文献   

13.
Monolayers of oleanolic acid (OLA) mixed with stearic acid (SA) were studied at the air-water interface. The surface pressure-area (pi-A) isotherms, measured over the whole composition range, and BAM observations were used to investigate the phase behaviour and self-organization of these components in a two-dimensional structure. Pure OLA forms a very compressible monolayer, and BAM observation revealed the coexistence of large and irregular solid domains of different thickness dispersed in a gas matrix, compatible with the two most probable orientations of the OLA molecule at the interface. Mixtures of OLA/SA form condensed monolayers from low surface pressures and the thermodynamic analysis indicates that OLA molecules, in the presence of the long-chain SA, orient with the major axis almost perpendicular to the interface. Langmuir-Blodgett (LB) monolayers of pure SA and mixtures were further characterized by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). AFM images of LB mixed monolayers evidenced microphase separation, not observable by BAM. The SA rich domains are 4-6A thicker than those rich in OLA. The FTIR spectra of mixed LB films on CaF2 substrates showed that OLA does not perturb the all-trans conformation of the SA long alkyl chains, up to a mole fraction of 0.4. The carbonyl-stretching band of OLA suggests that the carboxylic groups of neighbour OLA molecules are involved in hydrogen bonds, forming dimers, as in pure solid phase OLA. These interactions seem to prevail over the OLA-water hydrogen bonds.  相似文献   

14.
The properties of Trematosphaeria mangrovei laccase enzyme purified on Sephadex G-100 column were investigated. SDS–PAGE of the purified laccase enzyme showed a single band at 48 kDa. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO4 completely inhibited laccase enzyme and also highly affected by (NaN3) at a concentration of 1 mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The UV absorption spectra of the purified laccase enzyme showed a single peak at 260–280 nm.  相似文献   

15.
N-Succinylamino acid racemase (NSAAR) with N-acylamino acid racemase (NAAAR) activity together with a d- or l-aminoacylase allows the total transformation of N-acetylamino acid racemic mixtures into optically pure d- or l-amino acids, respectively. In this work we have cloned and expressed the N-succinylamino acid racemase gene from the thermophilic Bacillus-related species Geobacillus kaustophilus CECT4264 in Escherichia coli BL21 (DE3). G. kaustophilus NSAAR (GkNSAAR) was purified in a one-step procedure by immobilized cobalt affinity chromatography and showed an apparent molecular mass of 43 kDa in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 150 kDa, suggesting that the native enzyme is a homotetramer. Optimum reaction conditions for the purified enzyme were 55 °C and pH 8.0, using N-acetyl-d-methionine as substrate. GkNSAAR showed a gradual loss of activity at preincubation temperatures over 60 °C, suggesting that it is thermostable. As activity was greatly enhanced by Co2+, Mn2+ and Ni2+ but inhibited by metal-chelating agents, it is considered a metalloenzyme. The Co2+-dependent activity profile of the enzyme was studied with no detectable inhibition at higher metal ion concentrations. GkNSAAR showed activity towards both aliphatic and aromatic N-acetylamino acids such as N-acetyl-methionine and N-acetyl-phenylalanine, respectively, with kcat/Km values ranging from 1 × 103 to 9 × 103 s?1 M?1. Kinetic parameters were better for N-acetyl-d-amino acids than for N-acetyl-l-specific ones.  相似文献   

16.
Succinic acid (SA) is a four carbon dicarboxylic acid of great industrial interest that can be produced by microbial fermentation. Here we report development of a high-yield homo-SA producing Mannheimia succiniciproducens strain by metabolic engineering. The PALFK strain (ldhA-, pta-, ackA-, fruA-) was developed based on optimization of carbon flux towards SA production while minimizing byproducts formation through the integrated application of in silico genome-scale metabolic flux analysis, omics analyses, and reconstruction of central carbon metabolism. Based on in silico simulation, utilization of sucrose would enhance the SA production and cell growth rates, while consumption of glycerol would reduce the byproduct formation rates. Thus, sucrose and glycerol were selected as dual carbon sources to improve the SA yield and productivity, while deregulation of catabolite-repression was also performed in engineered M. succiniciproducens. Fed-batch fermentations of PALFK with low- and medium-density (OD600 of 0.4 and 9.0, respectively) inocula produced 69.2 and 78.4 g/L of homo-SA with yields of 1.56 and 1.64 mol/mol glucose equivalent and overall volumetric SA productivities of 2.50 and 6.02 g/L/h, respectively, using sucrose and glycerol as dual carbon sources. The SA productivity could be further increased to 38.6 g/L/h by employing a membrane cell recycle bioreactor system. The systems metabolic engineering strategies employed here for achieving homo-SA production with the highest overall performance indices reported to date will be generally applicable for developing superior industrial microorganisms and competitive processes for the bio-based production of other chemicals as well.  相似文献   

17.
The energy conservation and number of viable cells of Nitrosomonas europaea fluctuate dramatically during cultivation. In discontinuous culture the specific activity (SA) reaches its maximum after 9 h with about 2700 nmol O2 (mg protein)?1 min?1, where the highest number of viable N. europaea cells is detectable after 21 h with 2 × 108 cell ml?1. Afterwards, both SA and viable cell number immediately start to decrease. Accordingly, the exponential growth turns into a linear growth, whereby the number of viable cells permanently decreases. The exponential growth phase can be extended from about 21 to 38 h by increasing the concentration of CO2 or trace elements. In continuous fermentation of N. europaea, SA of about 2500 nmol O2 (mg protein)?1 min?1 and viable cell number of 2.5 × 108 cell ml?1 is detectable at dilution rates between 1 and 1.8 day?1. At dilution rates below 1 day?1, SA and number of viable cells are reduced. The minimal doubling time is 13 and 15 h during continuous and discontinuous fermentation, respectively. Consequently, cell production of N. europaea should be performed in continuous fermentation. When bacteria are grown in discontinuous systems, they should be harvested in the early exponential growth phase.  相似文献   

18.
Green synthesis of nanoparticles using various plant materials opens a new scope for the phytochemist and discourages the use of toxic chemicals. In this article, we report an eco-friendly and low-cost method for the synthesis of silver nanoparticles (AgNPs) using Andean blackberry fruit extracts as both a reducing and capping agent. The green synthesized AgNPs were characterized by various analytical instruments like UV–visible, transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The formation of AgNPs was analyzed by UV–vis spectroscopy at λmax = 435 nm. TEM analysis of AgNPs showed the formation of a crystalline, spherical shape and 12–50 nm size, whereas XRD peaks at 38.04°, 44.06°, 64.34° and 77.17° confirmed the crystalline nature of AgNPs. FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. Furthermore, it was found that the AgNPs showed good antioxidant efficacy (>78%, 0.1 mM) against 1,1-diphenyl-2-picrylhydrazyl. The process of synthesis is environmentally compatible and the synthesized AgNPs could be a promising candidate for many biomedical applications.  相似文献   

19.
The aim of this study was to evaluate the antiviral potential of methanolic extract (ME) of Achyranthes aspera, an Indian folk medicine and one of its pure compound oleanolic acid (OA) against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The ME possessed weak anti-herpes virus activity (EC50 64.4 μg/ml for HSV-1 and 72.8 μg/ml for HSV-2). While OA exhibited potent antiherpesvirus activity against both HSV-1 (EC50 6.8 μg/ml) and HSV-2 (EC50 7.8 μg/ml). The time response study revealed that the antiviral activity of ME and OA is highest at 2–6 h post infection. The infected and drug-treated peritoneal macrophage at specific time showed increased level of pro-inflammatory cytokines (IL6 and IL12). Further, the PCR of DNA from infected cultures treated with ME and OA, at various time intervals, failed to show amplification at 48–72 h, similar to that of HSV infected cells treated with acyclovir, indicating that the ME and OA probably inhibit the early stage of multiplication (post infection of 2–6 h). Thus, our study demonstrated that ME and OA have good anti-HSV activity, with SI values of 12, suggesting the potential use of this plant.  相似文献   

20.
Salicylic acid (SA) as a signal molecule mediates many biotic and environmental stress-induced physiological responses in plants. In this study, we investigated the role of SA in regulating Hg-induced oxidative stress in the roots of alfalfa (Medicago sativa). Plants pretreated with 0.2 mM SA for 12 h and subsequently exposed to 10 μM Hg2+ for 24 h displayed attenuated toxicity to the root. The SA-promoted root growth was correlated with decreased lipid peroxidation in root cells. The ameliorating effect of SA was confirmed by the histochemical staining for the detection of loss of membrane integrity in Hg-treated roots. We show that treatment with 0.2 mM SA increased the activity of NADH oxidase, ascorbate peroxidase (APX) and peroxidase (POD) in the roots exposed Hg. However, a slightly decreased superoxide dismutase (SOD) activity was observed in SA + Hg-treated roots when compared to those of Hg treatment alone. We also measured accumulation of ascorbate (ASC), glutathione (GSH) and proline in the roots of alfalfa and found that roots treated with SA in the presence of Hg accumulated more ASC, GSH and proline than those treated with Hg only. These results suggest that exogenous SA may improve the tolerance of the plant to the Hg toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号