首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Modified function of immune cells in nasal secretions may play a role in the enhanced susceptibility to respiratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic criteria alone, which have successfully identified neutrophils as a significant cell population within nasal lavage fluid (NLF) cells. However, flow cytometry may be a superior method to fully characterize NLF immune cells. We therefore characterized immune cells in NLF by flow cytometry, determined the effects of live attenuated influenza virus (LAIV) on NLF and peripheral blood immune cells, and compared responses in samples obtained from smokers and nonsmokers.

Methods

In a prospective observational study, we characterized immune cells in NLF of nonsmokers at baseline using flow cytometry and immunohistochemistry. Nonsmokers and smokers were inoculated with LAIV on day 0 and serial nasal lavages were collected on days 1-4 and day 9 post-LAIV. LAIV-induced changes of NLF cells were characterized using flow cytometry. Cell-free NLF was analyzed for immune mediators by bioassay. Peripheral blood natural killer (NK) cells from nonsmokers and smokers at baseline were stimulated in vitro with LAIV followed by flow cytometric and mediator analyses.

Results

CD45(+)CD56(-)CD16(+) neutrophils and CD45(+)CD56(+) NK cells comprised median 4.62% (range 0.33-14.52) and 23.27% (18.29-33.97), respectively, of non-squamous NLF cells in nonsmokers at baseline. LAIV did not induce changes in total NK cell or neutrophil percentages in either nonsmokers or smokers. Following LAIV inoculation, CD16(+) NK cell percentages and granzyme B levels increased in nonsmokers, and these effects were suppressed in smokers. LAIV inoculation enhanced expression of activating receptor NKG2D and chemokine receptor CXCR3 on peripheral blood NK cells from both nonsmokers and smokers in vitro but did not induce changes in CD16(+) NK cells or granzyme B activity in either group.

Conclusions

These data are the first to identify NK cells as a major immune cell type in the NLF cell population and demonstrate that mucosal NK cell cytotoxic function is suppressed in smokers following LAIV. Altered NK cell function in smokers suggests a potential mechanism that may enhance susceptibility to respiratory viruses.  相似文献   

2.

Background

We have previously shown that NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells are reduced in both numbers and cytotoxicity in peripheral blood. The aim of the present study was to investigate their numbers and function within induced sputum.

Methods

Induced sputum cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD56+ cells (NK and NKT-like cells) were used in an LDH release assay to determine cytotoxicity.

Results

The proportion of NK cells and NKT-like cells in smokers with COPD (COPD subjects) was significantly higher (12.7% and 3%, respectively) than in healthy smokers (smokers) (5.7%, p < 0.01; 1%, p < 0.001) and non-smoking healthy subjects (HNS) (4.2%, p < 0.001; 0.8%, p < 0.01). The proportions of NK cells and NKT-like cells expressing both perforin and granzyme B were also significantly higher in COPD subjects compared to smokers and HNS. CD56+ cells from COPD subjects were significantly more cytotoxic (1414 biological lytic activity) than those from smokers (142.5; p < 0.01) and HNS (3.8; p < 0.001) and were inversely correlated to FEV1. (r = -0.75; p = 0.0098).

Conclusion

We have shown an increased proportion of NK and NKT-like cells in the induced sputum of COPD subjects and have demonstrated that these cells are significantly more cytotoxic in COPD subjects than smokers and HNS.  相似文献   

3.

Background

There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3-) cells and NKT-like (CD56+CD3+) cells.

Methods

Peripheral blood mononuclear cells (PBMCs) were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies.

Results

The proportion of peripheral blood NKT-like (CD56+CD3+) cells in smokers with COPD (COPD subjects) was significantly lower (0.6%) than in healthy smokers (smokers) (2.8%, p < 0.001) and non-smoking healthy participants (HNS) (3.3%, p < 0.001). NK (CD56+CD3-) cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p < 0.001) as were NKT-like (CD56+CD3+) cells (16.7% vs 52.4% specific lysis, p < 0.001). Both cell types had lower proportions expressing both perforin and granzyme B. Blocking the action of perforin and granzyme B reduced the cytotoxic activity of NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells from smokers and HNS.

Conclusion

In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells in COPD subjects are reduced and that their cytotoxic effector function is defective.  相似文献   

4.

Background

Neonatal Natural Killer (NK) cells show functional impairment and expansion of a CD56 negative population of uncertain significance.

Methods

NK cells were isolated from cord blood and from adult donors. NK subpopulations were identified as positive or negative for the expression of CD56 and characterized for expression of granzyme B and surface markers by multi-parameter flow cytometry. Cell function was assessed by viral suppression and cytokine production using autologous lymphocytes infected with HIV. Activating (NKp30, NKp46) and inhibitory (Siglec-7) markers in healthy infants and adults were compared with viremic HIV-infected adults.

Results

Cord blood contained increased frequencies of CD56 negative (CD56neg) NK cells with reduced expression of granzyme B and reduced production of IFNγ and the CC-class chemokines RANTES, MIP1α and MIP1β upon stimulation. Both CD56pos and CD56neg NK subpopulations showed impaired viral suppression in cord blood, with impairment most marked in the CD56neg subset. CD56neg NK cells from cord blood and HIV-infected adults shared decreased inhibitory and activating receptor expression when compared with CD56pos cells.

Conclusions

CD56neg NK cells are increased in number in normal infants and these effectors show reduced anti-viral activity. Like the expanded CD56neg population described in HIV-infected adults, these NK cells demonstrate functional impairments which may reflect inadequate development or activation.  相似文献   

5.

Background

Natural killer (NK) cells in the upper respiratory airways are not well characterized. In the current study, we sought to characterize and functionally assess murine nasal NK cells.

Methods

Using immunohistochemistry and flow cytometry, we compared the nasal NK cells of Ncr1 GFP/+ knock-in mice, whose NK cells produced green fluorescent protein, with their splenic and pulmonary counterparts. In addition, we functionally analyzed the nasal NK cells of these mice in vitro. To assess the in vivo functions of nasal NK cells, C57BL/6 mice depleted of NK cells after treatment with PK136 antibody were nasally infected with influenza virus PR8.

Results

Immunohistochemical analysis confirmed the presence of NK cells in the lamina propria of nasal mucosa, and flow cytometry showed that these cells were of NK cell lineage. The expression patterns of Ly49 receptor, CD11b/CD27, CD62L and CD69 revealed that nasal NK cells had an immature and activated phenotype compared with that of their splenic and pulmonary counterparts. Effector functions including degranulation and IFN(interferon)-γ production after in vitro stimulation with phorbol 12-myristate-13-acetate plus ionomycin or IL(interleukin)-12 plus IL-18 were dampened in nasal NK cells, and the depletion of NK cells led to an increased influenza virus titer in nasal passages.

Conclusions

The NK cells of the murine nasal passage belong to the conventional NK cell linage and characteristically demonstrate an immature and activated phenotype. Despite their hyporesponsiveness in vitro, nasal NK cells play important roles in the host defense against nasal influenza virus infection.  相似文献   

6.
Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses.Trial Registration: ClinicalTrials.gov NCT01269723  相似文献   

7.

Rationale

Unbiased approaches that study aberrant protein expression in primary airway epithelial cells at single cell level may profoundly improve diagnosis and understanding of airway diseases. We here present a flow cytometric procedure to study CFTR expression in human primary nasal epithelial cells from patients with Cystic Fibrosis (CF). Our novel approach may be important in monitoring of therapeutic responses, and better understanding of CF disease at the molecular level.

Objectives

Validation of a panel of CFTR-directed monoclonal antibodies for flow cytometry and CFTR expression analysis in nasal epithelial cells from healthy controls and CF patients.

Methods

We analyzed CFTR expression in primary nasal epithelial cells at single cell level using flow cytometry. Nasal cells were stained for pan-Cytokeratin, E cadherin, and CD45 (to discriminate epithelial cells and leukocytes) in combination with intracellular staining of CFTR. Healthy individuals and CF patients were compared.

Measurements and Main Results

We observed various cellular populations present in nasal brushings that expressed CFTR protein at different levels. Our data indicated that CF patients homozygous for F508del express varying levels of CFTR protein in nasal epithelial cells, although at a lower level than healthy controls.

Conclusion

CFTR protein is expressed in CF patients harboring F508del mutations but at lower levels than in healthy controls. Multicolor flow cytometry of nasal cells is a relatively simple procedure to analyze the composition of cellular subpopulations and protein expression at single cell level.  相似文献   

8.

Background

Nerve growth factor (NGF) is a neurotrophin crucial for the development and survival of neurons. It also acts on cells of the immune system which express the NGF receptors TrkA and p75NTR and can be produced by them. However, mouse NK cells have not yet been studied in this context.

Methodology/Principal Findings

We used cell culture, flow cytometry, confocal microscopy and ELISA assays to investigate the expression of NGF receptors by NK cells and their secretion of NGF. We show that resting NK cells express TrkA and that the expression is different on NK cell subpopulations defined by the relative presence of CD27 and CD11b. Expression of TrkA is dramatically increased in IL-2-activated NK cells. The p75NTR is expressed only on a very low percentage of NK cells. Functionally, NGF moderately inhibits NK cell degranulation, but does not influence proliferation or cytokine production. NK cells do not produce NGF.

Conclusions/Significance

We demonstrate for the first time that mouse NK cells express the NGF receptor TrkA and that this expression is dynamically regulated.  相似文献   

9.

Background

CD8+ T-lymphocytes, natural killer T-like cells (NKT-like cells, CD56+CD3+) and natural killer cells (NK cells, CD56+CD3) are the three main classes of human killer cells and they are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Activation of these cells can initiate immune responses by virtue of their production of inflammatory cytokines and chemokines that cause lung tissue damage, mucus hypersecretion and emphysema. The objective of the current study was to investigate the activation levels of human killer cells in healthy non-smokers, healthy smokers, ex-smokers with COPD and current smokers with COPD, in both peripheral blood and induced sputum.

Methods/Principal Findings

After informed consent, 124 participants were recruited into the study and peripheral blood or induced sputum was taken. The activation states and receptor expression of killer cells were measured by flow cytometry. In peripheral blood, current smokers, regardless of disease state, have the highest proportion of activated CD8+ T-lymphocytes, NKT-like cells and NK cells compared with ex-smokers with COPD and healthy non-smokers. Furthermore, CD8+ T-lymphocyte and NK cell activation is positively correlated with the number of cigarettes currently smoked. Conversely, in induced sputum, the proportion of activated killer cells was related to disease state rather than current smoking status, with current and ex-smokers with COPD having significantly higher rates of activation than healthy smokers and healthy non-smokers.

Conclusions

A differential effect in systemic and lung activation of killer cells in COPD is evident. Systemic activation appears to be related to current smoking whereas lung activation is related to the presence or absence of COPD, irrespective of current smoking status. These findings suggest that modulating killer cell activation may be a new target for the treatment of COPD.  相似文献   

10.

Background

Improvements to the outcome of adaptive immune responses could be achieved by inducing specific natural killer (NK) cell subsets which can cooperate with dendritic cells to select efficient T cell responses. We previously reported the induction or reactivation of T cell responses in chronic hepatitis B patients vaccinated with a DNA encoding hepatitis B envelope proteins during a phase I clinical trial.

Methodology/Principal Findings

In this study, we examined changes in the peripheral NK cell populations occurring during this vaccine trial using flow cytometry analysis. Despite a constant number of NK cells in the periphery, a significant increase in the CD56bright population was observed after each vaccination and during the follow up. Among the 13 different NK cell markers studied by flow cytometry analysis, the expression of CD244 and NKG2D increased significantly in the CD56bright NK population. The ex vivo CD107a expression by CD56bright NK cells progressively increased in the vaccinated patients to reach levels that were significantly higher compared to chronically HBV-infected controls. Furthermore, modifications to the percentage of the CD56bright NK cell population were correlated with HBV-specific T cell responses detected by the ELISPOT assay.

Conclusions/Significance

These changes in the CD56bright population may suggest a NK helper effect on T cell adaptive responses. Activation of the innate and adaptive arms of the immune system by DNA immunization may be of particular importance to the efficacy of therapeutic interventions in a context of chronic infections.

Trial Registration

ClinicalTrials.gov NCT00988767  相似文献   

11.

Background

The influence of tobacco smoking on the immune system of HIV infected individuals is largely unknown. We investigated the impact of tobacco smoking on immune activation, microbial translocation, immune exhaustion and T-cell function in HIV infected individuals.

Method

HIV infected smokers and non-smokers (n = 25 each) with documented viral suppression on combination antiretroviral therapy and HIV uninfected smokers and non-smokers (n = 15 each) were enrolled. Markers of immune activation (CD38 and HLA-DR) and immune exhaustion (PD1, Tim3 and CTLA4) were analyzed in peripheral blood mononuclear cells (PBMCs) by flow cytometry. Plasma markers of microbial translocation (soluble-CD14 - sCD14 and lipopolysaccharide - LPS) were measured. Antigen specific functions of CD4+ and CD8+ T-cells were measured, by flow cytometry, in PBMCs after 6 hours stimulation with Cytomegalovirus, Epstein-Barr virus and Influenza Virus (CEF) peptide pool.

Results

Compared to non-smokers, smokers of HIV infected and uninfected groups showed significantly higher CD4+ and CD8+ T-cell activation with increased frequencies of CD38+HLA-DR+ cells with a higher magnitude in HIV infected smokers. Expressions of immune exhaustion markers (PD1, Tim3 and CTLA4) either alone or in combinations were significantly higher in smokers, especially on CD4+ T-cells. Compared to HIV uninfected non-smokers, microbial translocation (sCD14 and LPS) was higher in smokers of both groups and directly correlated with CD4+ and CD8+ T-cell activation. Antigen specific T-cell function showed significantly lower cytokine response of CD4+ and CD8+ T-cells to CEF peptide-pool stimulation in smokers of both HIV infected and uninfected groups.

Conclusions

Our results suggest that smoking and HIV infection independently influence T-cell immune activation and function and together they present the worst immune profile. Since smoking is widespread among HIV infected individuals, studies are warranted to further evaluate the cumulative effect of smoking on impairment of the immune system and accelerated disease progression.  相似文献   

12.

Background

The importance of immune responses in the control of melanoma growth is well known. However, the implication of these antitumor immune responses in the efficacy of dacarbazine, a cytotoxic drug classically used in the treatment of melanoma, remains poorly understood in humans.

Methods

In this prospective observational study, we performed an immunomonitoring of eleven metastatic or locally advanced patients treated with dacarbazine as a first line of treatment. We assessed by flow cytometry lymphoid populations and their activation state; we also isolated NK cells to perform in vitro cytotoxicity tests.

Results

We found that chemotherapy induces lymphopenia and that a significantly higher numbers of naïve CD4+ T cells and lower proportion of Treg before chemotherapy are associated with disease control after dacarbazine treatment. Interestingly, NK cell cytotoxicity against dacarbazine-pretreated melanoma cells is only observed in NK cells from patients who achieved disease control.

Conclusion

Together, our data pinpoint that some immune factors could help to predict the response of melanoma patients to dacarbazine. Future larger scale studies are warranted to test their validity as prediction markers.  相似文献   

13.

Background

Toll-like receptors (TLRs) on T cells can modulate their responses, however, the extent and significance of TLR expression by lung T cells, NK cells, or NKT cells in chronic obstructive pulmonary disease (COPD) is unknown.

Methods

Lung tissue collected from clinically-indicated resections (n = 34) was used either: (a) to compare the expression of TLR1, TLR2, TLR2/1, TLR3, TLR4, TLR5, TLR6 and TLR9 on lung CD8+ T cells, CD4+ T cells, NK cells and NKT cells from smokers with or without COPD; or (b) to isolate CD8+ T cells for culture with anti-CD3ε without or with various TLR ligands. We measured protein expression of IFN-γ, TNF-α, IL-13, perforin, granzyme A, granzyme B, soluble FasL, CCL2, CCL3, CCL4, CCL5, CCL11, and CXCL9 in supernatants.

Results

All the lung subsets analyzed demonstrated low levels of specific TLR expression, but the percentage of CD8+ T cells expressing TLR1, TLR2, TLR4, TLR6 and TLR2/1 was significantly increased in COPD subjects relative to those without COPD. In contrast, from the same subjects, only TLR2/1 and TLR2 on lung CD4+ T cells and CD8+ NKT cells, respectively, showed a significant increase in COPD and there was no difference in TLR expression on lung CD56+ NK cells. Production of the Tc1 cytokines IFN-γ and TNF-α by lung CD8+ T cells were significantly increased via co-stimulation by Pam3CSK4, a specific TLR2/1 ligand, but not by other agonists. Furthermore, this increase in cytokine production was specific to lung CD8+ T cells from patients with COPD as compared to lung CD8+ T cells from smokers without COPD.

Conclusions

These data suggest that as lung function worsens in COPD, the auto-aggressive behavior of lung CD8+ T cells could increase in response to microbial TLR ligands, specifically ligands against TLR2/1.  相似文献   

14.

Background

Nature killer (NK) cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment.

Materials and methods

Our study analyzed the change about NK cells surface markers (NK cells receptors) through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse.

Results

We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients'' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently.

Conclusions

The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy.  相似文献   

15.
X Xu  Q Wang  B Deng  H Wang  Z Dong  X Qu  B Kong 《PloS one》2012,7(7):e41869

Background

Decidual stromal cells (DSCs) are of particular importance due to their pleiotropic functions during pregnancy. Although previous research has demonstrated that DSCs participated in the regulation of immune cells during pregnancy, the crosstalk between DSCs and NK cells has not been fully elucidated. To address this issue, we investigated the effect of DSCs on perforin expression in CD56+ NK cells and explored the underlying mechanism.

Methodology/Principal Findings

Flow cytometry analysis showed perforin production in NK cells was attenuated by DSC media, and it was further suppressed by media from DSCs pretreated with lipopolysaccharide (LPS). However, the expression of granzyme A and apoptosis of NK cells were not influenced by DSC media. ELISA assays to detect cytokine production indicated that monocyte chemoattractant protein-1 (MCP-1) in the supernatant of DSCs conditioned culture significantly increased after LPS stimulation. The inhibitory effect of DSC media on perforin was abolished by the administration of anti-MCP-1 neutralizing antibody. Notably, reduced perforin expression attenuated the cytotoxic potential of CD56+NK cells to K562 cells. Moreover, Suppressor of cytokine signaling 3 (SOCS3) expression in NK cells was enhanced by treatment with MCP-1, as measured by RT-PCR and western blot. Interestingly, MCP-1-induced perforin expression was partly abolished by the siRNA induced SOCS3 knockdown. Western blot analysis suggested that both NF-κB and ERK/MAPKs pathway were involved in the LPS-induced upregulation of MCP-1 in DSCs.

Conclusions/Significance

Our results demonstrate that LPS induces upregulation of MCP-1 in DSCs, which may play a critical role in inhibiting the cytotoxicity of NK cells partly by promoting SOCS3 expression. These findings suggest that the crosstalk between DSCs and NK cells may be crucial to maintain pregnancy homeostasis.  相似文献   

16.

Background

CD4+ T cells in the lung are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), although CD4+ T cell subsets and the direct effect of smoking on these cells, especially the expression of MRs, have not been comprehensively examined.

Methods

First, circulating CD4+ T cell subsets in healthy nonsmokers, patients with SCOPD and patients with AECOPD were evaluated by flow cytometry. Then, differentiation experiments were carried out using RT-PCR, and Ki-67/Annexin V antibodies were used to measure proliferation and apoptosis. We also explored the impact of CSE on the differentiation and survival of CD4+Th/Tregs and examined the expression of MRs in healthy nonsmokers and patients with SCOPD.

Results

We found the percentages of circulating Th1 and Th17 cells were increased in patients with AECOPD, while the percentage of Th2 cells was decreased in patients with SCOPD. The percentages of Th10 cells were decreased in both patients with SCOPD and patients with AECOPD, while the percentages of Tregs were increased. In addition, the percentages of CD4+α-7+ T cells were decreased in patients with SCOPD and patients with AECOPD. However, only the decrease observed in patients with AECOPD was significant. In vitro studies also revealed MR expression affected the polarization of T cells, with different CD4+ T cell subtypes acquiring different MR expression profiles. The addition of CSE facilitated CD4+ T cell polarization towards pro-inflammatory subsets (Th1 and Th17) and affected the survival of CD4+ T cells and Treg cells by up-regulating the expression of MR3 and 5, resulting in an imbalance of CD4+ T cell subsets.

Conclusions

Our findings suggest an imbalance of circulating CD4+ T cell subsets is involved in COPD pathogenesis in smokers. Cigarette smoking may contribute to this imbalance by affecting the polarization and survival of Th/Tregs through the up-regulation of MR3 and MR5.  相似文献   

17.

Background

Myeloid derived suppressor cells (MDSC) are important regulators of immune responses. We evaluated the mechanistic role of MDSC depletion on antigen presenting cell (APC), NK, T cell activities and therapeutic vaccination responses in murine models of lung cancer.

Principal Findings

Individual antibody mediated depletion of MDSC (anti-Gr1 or anti-Ly6G) enhanced the antitumor activity against lung cancer. In comparison to controls, MDSC depletion enhanced the APC activity and increased the frequency and activity of the NK and T cell effectors in the tumor. Compared to controls, the anti-Gr1 or anti-Ly6G treatment led to increased: (i) CD8 T cells, (ii) NK cells, (iii) CD8 T or NK intracytoplasmic expression of IFNγ, perforin and granzyme (iv) CD3 T cells expressing the activation marker CD107a and CXCR3, (v) reduced CD8 T cell IL-10 production in the tumors (vi) reduced tumor angiogenic (VEGF, CXCL2, CXCL5, and Angiopoietin1&2) but enhanced anti-angiogenic (CXCL9 and CXCL10) expression and (vii) reduced tumor staining of endothelial marker Meca 32. Immunocytochemistry of tumor sections showed reduced Gr1 expressing cells with increased CD3 T cell infiltrates in the anti-Gr1 or anti-Ly6G groups. MDSC depletion led to a marked inhibition in tumor growth, enhanced tumor cell apoptosis and reduced migration of the tumors from the primary site to the lung compared to controls. Therapeutic vaccination responses were enhanced in vivo following MDSC depletion with 50% of treated mice completely eradicating established tumors. Treated mice that rejected their primary tumors acquired immunological memory against a secondary tumor challenge. The remaining 50% of mice in this group had 20 fold reductions in tumor burden compared to controls.

Significance

Our data demonstrate that targeting MDSC can improve antitumor immune responses suggesting a broad applicability of combined immune based approaches against cancer. This multifaceted approach may prove useful against tumors where MDSC play a role in tumor immune evasion.  相似文献   

18.

Objective

Atherosclerosis is characterized by a chronic inflammatory response involving activated T cells and impairment of natural killer (NK) cells. An increased T cell activity has been associated with plaque instability and risk of acute cardiac events. Lymphocyte analyses in blood are widely used to evaluate the immune status. However, peripheral blood contains only a minor proportion of lymphocytes. In this study, we hypothesized that thoracic lymph nodes from patients with stable angina (SA) and acute coronary syndrome (ACS) might add information to peripheral blood analyses.

Methods

Peripheral blood and lymph nodes were collected during coronary by-pass surgery in 13 patients with SA and 13 patients with ACS. Lymphocyte subpopulations were assessed by flow cytometry using antibodies against CD3, CD4, CD8, CD19, CD16/56, CD25, Foxp3, CD69, HLA-DR, IL-18 receptor (R) and CCR4.

Results

Lymph nodes revealed a lymphocyte subpopulation profile substantially differing from that in blood including a higher proportion of B cells, lower proportions of CD8+ T cells and NK cells and a 2-fold higher CD4/CD8 ratio. CD4+CD69+ cells as well as Foxp3+ regulatory T cells were markedly enriched in lymph nodes (p<0.001) while T helper 1-like (CD4+IL-18R+) cells were more frequent in blood (p<0.001). The only significant differences between ACS and SA patients involved NK cells that were reduced in the ACS group. However, despite being reduced, the NK cell fraction in ACS patients contained a significantly higher proportion of IL-18R+ cells compared with SA patients (p<0.05).

Conclusion

There were several differences in lymphocyte subpopulations between blood and lymph nodes. However, the lymphocyte perturbations in peripheral blood of ACS patients compared with SA patients were not mirrored in lymph nodes. The findings indicate that lymph node analyses in multivessel coronary artery disease may not reveal any major changes in the immune response that are not detectable in blood.  相似文献   

19.

Background

Despite an increasing awareness of the importance of innate immunity, the roles of natural killer (NK) cells in transplant rejection and antiviral and cancer immunity during immunosuppression have not been clearly defined.

Methods

To address this issue we have developed a quantitative assay of NK cell function that can be used on clinical samples and have studied the influence of immunosuppression on NK cell function. NK cell degranulation and intracellular interferon (IFN)-γ production were determined by flow cytometry of peripheral blood samples.

Results

Overnight ex vivo treatment of peripheral blood cells from healthy controls with ciclosporin or tacrolimus inhibited NK cell degranulation and IFN-γ production in a dose-dependent manner. A similar impairment of function was seen in NK cells from patients treated in vivo with calcineurin inhibitors. In the early post-transplant period, there was a variable reduction of NK cell counts after treatment with alemtuzumab and basiliximab.

Conclusions

The functional inhibition of NK cells in early transplant patients coincides with the period of maximum susceptibility to viral infections. The ability to assay NK cell function in clinical samples allows assessment of the impact of immunosuppression on these effector cells. This information may be helpful in guiding the titration of immunosuppression in the clinical setting.  相似文献   

20.

Background

Pro-inflammatory/cytotoxic T cells (IFNγ, TNFα, granzyme B+) are increased in the peripheral circulation in COPD. NKT-like and NK cells are effector lymphocytes that we have also shown to be major sources of pro-inflammatory cytokines and granzymes. P-glycoprotein 1 (Pgp1) is a transmembrane efflux pump well characterised in drug resistant cancer cells. We hypothesized that Pgp1 would be increased in peripheral blood T, NKT-like and NK cells in patients with COPD, and that this would be accompanied by increased expression of IFNγ, TNFα and granzyme B. We further hypothesized that treatment with cyclosporine A, a Pgp1 inhibitor, would render cells more sensitive to treatment with corticosteroids.

Methods

Pgp1, granzyme B, IFNγ and TNFα expression were measured in peripheral blood T, NK and NKT-like cells from COPD patients and control subjects (± cyclosporine A and prednisolone) following in vitro stimulation and results correlated with uptake of efflux dye Calcein-AM using flow cytometry.

Results

There was increased Pgp1 expression by peripheral blood T, NKT-like and NK cells co-expressing IFNγ, TNFα and granzyme B in COPD patients compared with controls (e.g. %IFNγ/Pgp1 T, NKT-like, NK for COPD (Control): 25(6), 54(27), 39(23)). There was an inverse correlation between Pgp1 expression and Calcein-AM uptake. Treatment with 2.5 ng/ml cylosporin A and10-6 M prednisolone resulted in synergistic inhibition of pro-inflammatory cytokines in Pgp1 + cells (p < 0.05 for all).

Conclusions

Treatment strategies that target Pgp1 in T, NKT-like and NK cells may reduce systemic inflammatory mediators in COPD and improve patient morbidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号