首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.  相似文献   

2.
《Process Biochemistry》2014,49(2):290-294
Microorganisms capable of extracellular electron transfer play important roles in biogeochemical redox processes and have been of great interest in the fields of energy recovery, waste treatment, and environmental remediation. In this study, a new electrochemically active bacterium was identified with a high-throughput method using WO3 nanoclusters as probes. The 16S rRNA gene sequence designated the strain as Lysinibacillus sphaericus D-8, a Gram-positive bacterium. Its electrochemical activity was characterized in a two-chamber microbial fuel cell and a three-electrode electrochemical cell. Strain D-8 produced 92 mW/m2 of power using lactate as the electron donor. The electrochemical impedance spectroscopy results confirmed the electrochemical activity of this strain. Cyclic voltammetry analysis indicated that the presence of soluble redox active compounds might play an important role in the extracellular electron transfer by L. sphaericus D-8. This work might be the first report that demonstrates the electrochemical activity of Lysinibacillus species.  相似文献   

3.
Trevor D. Rapson 《BBA》2008,1777(10):1319-1325
Under hydrodynamic electrochemical conditions with slow cyclic voltammetry sweep rates we have been able to probe catalytic events at the molybdenum active site of sulfite dehydrogenase (SDH) from Starkeya novella adsorbed on an edge plane graphite electrode within a polylysine film. The electrochemically driven catalytic behaviour of SDH mirrors that seen in solution assays suggesting that the adsorbed enzyme retains its native activity. However, at high sulfite concentrations, the voltammetric waveform transforms from the expected sigmoidal profile to a peak-shaped response, similar to that reported for the molybdenum enzymes DMSO reductase and nitrate reductase (NarGHI and NapAB) where a redox reaction at the active site has been associated with a switch to lower activity at high overpotentials. This is the first time a similar phenomenon has been observed in a Mo-containing oxidase/dehydrogenase, which raises a number of interesting mechanistic problems. The potential at which the activity of SDH becomes attenuated only emerges at saturating substrate conditions and occurs at a potential (ca. + 320mV vs NHE) well removed from any known redox couple in the enzyme. These results cannot be explained by the same mechanism adopted for DMSO reductase and nitrate reductase catalysis.  相似文献   

4.
Nicotinamide adenine dinucleotide (NAD+) has been covalently attached to alginic acid using carbodiimide coupling, thereby producing a macromolecular adduct of NAD, which can be rendered either soluble or insoluble by adjustment of pH. It was found that this NAD+-alginic acid complex was enzymatically active, and also that the oxidized form could be electrochemically reduced without loss in enzymatic activity. This NAD+ adduct has now also been polarographically characterized as to its two-step reduction waves, which are slightly shifted toward more cathodic potential as compared to free NAD+. When controlled electrolysis was conducted to reduce the bound NAD+ at the cathode, the NADH so formed by electrochemical action was found to be again oxidizable either enzymatically or electrochemically without loss in co-enzymatic function. The NADH adduct produced by electrochemical reduction of the NAD+ adduct has also been characterized by voltammetry.  相似文献   

5.
A lactic acid bacterium capable of anaerobic respiration was isolated from soil with ferric iron-containing glucose basal medium and identified as L. garvieae by using 16S rDNA sequence homology. The isolate reduced ferric iron, nitrate, and fumarate to ferrous iron, nitrite, and succinate, respectively, under anaerobic N2 atmosphere. Growth of the isolate was increased about 30-39% in glucose basal medium containing nitrate and fumarate, but not in the medium containing ferric iron. Specifically, metabolic reduction of nitrate and fumarate is thought to be controlled by the specific genes fnr, encoding FNR-like protein, and nir, regulating fumarate-nitrate reductase. Reduction activity of ferric iron by the isolate was estimated physiologically, enzymologically, and electrochemically. The results obtained led us to propose that the isolate metabolized nitrate and fumarate as an electron acceptor and has specific enzymes capable of reducing ferric iron in coupling with anaerobic respiration.  相似文献   

6.
Nicotinamide adenine dinucleotide (NAD+) has been covalently attached to alginic acid using carbodiimide coupling, thereby producing a macromolecular adduct of NAD, which can be rendered either soluble or insoluble by adjustment of pH. It was found that this NAD+ · alginic acid complex was enzymatically active, and also that the oxidized form could be electrochemically reduced without loss in enzymatic activity. This NAD+ adduct has now also been polarographically characterized as to its two-step reduction waves, which are slightly shifted toward more cathodic potential as compared to free NAD+. When controlled electrolysis was conducted to reduce the bound NAD+ at the cathode, the NADH so formed by electrochemical action was found to be again oxidizable either enzymatically or electrochemically without loss in co-enzymic function. The NADH adduct produced by electrochemical reduction of the NAD+ adduct has also been characterized by voltammetry.  相似文献   

7.
AIMS: The isolation and identification of a glucose-oxidizing Fe(III)-reducing bacteria (FRB) with electrochemical activity from an anoxic environment, and characterization of the role of Fe(III) in its metabolism. METHODS AND RESULTS: A Gram-positive (Firmicutes), nonmotile, coccoid and facultative anaerobic FRB was isolated based on its ability to reduce Fe(III). Using the Vitek Gram-positive identification card kit and 16S rRNA gene sequence analysis, the isolate was identified as Enterococcus gallinarum, designated strain MG25. On glucose this isolate produced lactate plus small amounts of acetate, formate and CO2 and its growth rates were similar in the presence and absence of Fe(O)OH. These results suggest that MG25 can couple glucose oxidation to Fe(III) reduction, but without conservation of energy to support growth. Cyclic voltammetry showed that strain MG25 was electrochemically active. CONCLUSIONS: An electrochemically active and FRB, E. gallinarum MG25, was isolated from submerged soil. Fe(III) is used in the bacterial metabolism as an electron sink. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report concerning the electrochemical activity of glucose-oxidizing FRB, E. gallinarum. This organism and others like it could be used as new biocatalysts to improve the performance of a mediator-less microbial fuel cell.  相似文献   

8.
Cell designs, experimental protocols, and results for electrochemical investigation of small quantitites of biological materials under anaerobic conditions are reported. Three types of electrochemical experiments are considered: (i) cyclic voltammetry of 20- to 100-microliters samples; (ii) direct coulometry of 0.5- to 1.5-ml samples; and (iii) an electrochemically initiated protein activity assay which includes provision for analysis of gaseous reaction products and correlation with electron flux. The first two procedures are illustrated by measurement of the formal electrode potential (E0') and number of electrons transferred (n) in redox reactions of small quantities of biological and inorganic materials. The third procedure is illustrated by assaying the activity of the MoFe protein plus Fe protein complex from Azotobacter vinelandii nitrogenase for reduction of C2H2 to C2H4.  相似文献   

9.
Aims:  To design a cyclic voltammetry (CV) procedure to check the electrochemical activity of bacterial isolates that may explain the electrochemical properties of biofilms formed in compost.
Methods and Results:  Bacteria catalysing acetate oxidation in garden compost were able to form electrochemically active biofilms by transferring electrons to an electrode under chronoamperometry. They were recovered from the electrode surface and identification of the isolates using 16S rRNA sequencing showed that most of them were Gammaproteobacteria, mainly related to Enterobacter and Pseudomonas spp. A CV procedure was designed to check the electrochemical activity of both groups of isolates. Preliminary CVs suggested that the bacteria were not responsible for the catalysis of acetate oxidation. In contrast, both groups of isolates were found to catalyse the electrochemical reduction of oxygen under experimental conditions that favoured adsorption of the microbial cells on the electrode surface.
Conclusions:  Members of the genera Enterobacter and Pseudomonas were found to be able to catalyse the electrochemical reduction of oxygen.
Significance and Impact of the Study:  This study has shown the unexpected efficiency of Enterobacter and Pseudomonas spp. in catalysing the reduction of oxygen, suggesting a possible involvement of these species in biocorrosion, or possible application of these strains in designing bio-cathode for microbial fuel cells.  相似文献   

10.
The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.  相似文献   

11.
AIMS: To characterize bacterial populations and their activities within a microbial fuel cell (MFC), using cultivation-independent and cultivation approaches. METHODS AND RESULTS: Electron microscopic observations showed that the fuel cell electrode had a microbial biofilm attached to its surface with loosely associated microbial clumps. Bacterial 16S rRNA gene libraries were constructed and analysed from each of four compartments within the fuel cell: the planktonic community; the membrane biofilm; bacterial clumps (BC) and the anode biofilm. Results showed that the bacterial community structure varied significantly between these compartments. It was observed that Gammaproteobacteria phylotypes were present at higher numbers within libraries from the BC and electrode biofilm compared with other parts of the fuel cell. Community structure of the MFC determined by analyses of bacterial 16S rRNA gene libraries and anaerobic cultivation showed excellent agreement with community profiles from denaturing gradient gel electrophoresis (DGGE) analysis. CONCLUSIONS: Members of the family Enterobacteriaceae, such as Klebsiella sp. and Enterobacter sp. and other Gammaproteobacteria with Fe(III)-reducing and electrochemical activity had a significant potential for energy generation in this system. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has shown that electrochemically active bacteria can be enriched using an electrochemical fuel cell.  相似文献   

12.
Nitrate reductase (NR) from the fungus Neurospora crassa is a complex homodimeric metallo-flavoenzyme, where each protomer contains three distinct domains; the catalytically active terminal molybdopterin cofactor, a central heme-containing domain, and an FAD domain which binds with the natural electron donor NADPH. Here, we demonstrate the catalytic voltammetry of variants of N. crassa NRs on a modified Au electrode with the electrochemically reduced forms of benzyl viologen (BV2+) and anthraquinone sulfonate (AQS?) acting as artificial electron donors. The biopolymer chitosan used to entrap NR on the electrode non-covalently and the enzyme film was both stable and highly active. Electrochemistry was conducted on two distinct forms; one lacking the FAD cofactor and the other lacking both the FAD and heme cofactors. While both enzymes showed catalytic nitrate reductase activity, removal of the heme cofactor resulted in a more significant effect on the rate of nitrate reduction. Electrochemical simulation was carried out to enable kinetic characterisation of both the NR:nitrate and NR:mediator reactions.  相似文献   

13.
A new method for quantitation of captopril in human blood is described. Captopril was derivatized with N-(4-dimethylaminophenyl)maleimide into the electrochemically active adduct. The derivative was separated and determined by high-performance liquid chromatography with an electrochemical detector on a reversed-phase column. The proposed method was satisfactory for determination of captopril in whole blood with respect to accuracy and precision. The detection limit of captopril thereby obtained was 10 ng/ml. The blood levels of captopril in patients orally given an officinal dose were measured by the present method.  相似文献   

14.
Reduced nicotinamide adenine dinucleotide (NADH) has been characterized electrochemically by solid electrode voltammetry and controlled potential electrolysis. Photometric and enzymatic assay showed that enzymatically active nicotinamide adenine dinucleotide (NAD-+) could be regenerated electrolytically from its reduced form without the use of so-called electron mediators. Complete regeneration of enzymatically active NAD can be expected in pyrophosphate buffers and phosphate buffers during the electrolysis. Advantages of electrochemical regeneration of coenzymes are discussed, especially with regard to immobilization of enzymes.  相似文献   

15.
Escherichia coli strain LCB2048 is a double mutant defective in the synthesis of the two membrane-associated nitrate reductases A and Z. This strain can grow anaerobically on a non-fermentable carbon source, glycerol, in the presence of nitrate even in media supplemented with high concentrations of tungstate. This growth was totally dependent upon a highly active, periplasmic nitrate reductase (Nap). Due to the presence of a previously unreported narL mutation, synthesis of the periplasmic nitrate reductase by this strain was induced during anaerobic growth by nitrate. We have also demonstrated that methyl viologen is an ineffective electron donor to Nap: its use leads to an underestimation of the contribution of Nap activity to the rate of nitrate reduction in vivo.  相似文献   

16.
Reduced nicotinamide adenine dinucleotide (NADH) has been characterized electrochemically by solid electrode voltammetry and controlled potential electrolysis. Photometric and enzymatic assay showed that enzymatically active nicotinamide adenine dinucleotide (NAD+) could be regenerated electrolytically from its reduced form without the use of so-called electron mediators. Complete regeneration of enzymatically active NAD can be expected in pyrophosphate buffers and phosphate buffers during the electrolysis. Advantages of electrochemical regeneration of coenzymes are discussed, especially with regard to immobilization of enzymes.  相似文献   

17.
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelectrochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices.  相似文献   

18.
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelectrochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices.  相似文献   

19.
1. The electrochemical behavior ("activity") of collodion membranes depends upon acidic, dissociable groups located in the interstices of the membranes. The active groups can be determined by base exchange measurements. High base exchange capacity is always found with preparations of great "electrochemical activity;" medium and low base exchange capacities occur with electrochemically active as well as with inactive preparations. The observed base exchange capacity is determined by two factors: the inherent acidity of the collodion (its mean equivalent weight) and the submicroscopic micellar structure of the collodion. A comparison of the base exchange capacity of various collodion preparations and their inherent acidities therefore allows certain conclusions to be drawn concerning the relative availability of the micellar surfaces in the different preparations. 2. The inherent acidity of various collodion preparations, their "acid number," was determined by electrometric titration. Collodion in the acidic state, i.e. after exchange of all other cations for H+ ions, was titrated in an organic solvent mixture with alcoholic KOH using a quinhydrone electrode. Details of the experimental procedure are given in the paper. The acid numbers, expressed in milliliters of 0.01 N KOH per gram dry collodion, vary from 1.0 for a highly purified collodion preparation of very low electrochemical activity to 3.3 for a highly oxidized sample of very high activity. Acid numbers of about 1.5 (corresponding to an equivalent weight of about 67,000) are found both with inactive commercial and with fairly active oxidized preparations. The base exchange capacity of the same preparations in the fibrous state as measured after 48 hours of exchange time varies from 0.0013 ml. 0.01 N NaOH per gm. dry collodion for the most inactive preparation up to 0.26 ml. 0.01 N NaOH per gm. for the most active preparation. Thus the acid numbers over the whole range investigated differ only in the ratio of 1:3.3, whereas the base exchange values differ in the range of 1:200. 3. In the inactive preparation only one in 770 acid groups is available for base exchange, in the most active collodion one group in 13; values between these extremes are found with commercial and alcohol purified oxidized preparations. 4. The high base exchange capacity of the electrochemically active preparations is not so much due to their higher acid number as to their more open structure. This difference in structure is ascribed to the presence of a small fraction of low molecular weight material which inhibits normal formation and arrangement of the micelles. 5. Short time base exchange experiments with fibrous collodion indicate that the number of acid groups available for the typical electrochemical membrane functions may be estimated to be about 50 to 1000 times less numerous than those found in the 48 hour base exchange experiments. It is estimated that in membranes prepared even from the most active collodion not more than one in 500 acid groups may be available for the typical membrane functions; with the less active preparations this ratio is estimated to be as high as one in 1,000,000 or more.  相似文献   

20.
The effect of the nitrogen source on the cellular activity of ferredoxin-nitrate reductase in different cyanobacteria was examined. In the unicellular species Anacystis nidulans, nitrate reductase was repressed in the presence of ammonium but de novo enzyme synthesis took place in media containing either nitrate or not nitrogen source, indicating that nitrate was not required as an obligate inducer. Nitrate reductase in A. nidulans was freed from ammonium repression by L-methionine-D,L-sulfoximine, an irreversible inhibitor of glutamine synthetase. Ammonium-promoted repression appears therefore to be indirect; ammonium has to be metabolized through glutamine synthetase to be effective in the repression of nitrate reductase. Unlike the situation in A. nidulans, nitrate appeared to play an active role in nitrate reductase synthesis in the filamentous nitrogen-fixing strains Anabaena sp. strain 7119 and Nostoc sp. strain 6719, with ammonium acting as an antagonist with regard to nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号