首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mycelial growth of 10 Fusarium culmorum strains isolated from water of the Andarax riverbed in the provinces of Granada and Almeria in southeastern Spain was tested on potato-dextrose-agar adjusted to different osmotic potentials with either KCl or NaCl (?1.50 to ?144.54 bars) at 10°C intervals ranging from 15° to 35°C. Fungal growth was determined by measuring colony diameter after 4 d of incubation. Mycelial growth was maximal at 25°C. The quantity and capacity of mycelial growth of F. culmorum were similar at 15 and 25°C, with maximal growth occurring at ?13.79 bars water potential and a lack of growth at 35°C. The effect of water potential was independent of salt composition. The general growth pattern of Fusarium culmorum growth declined at potentials below ?13.79 bars. Fungal growth at 25°C was always greater than growth at 15°C, at all of the water potentials tested. Significant differences were observed in the response of mycelia to water potential and temperature as main and interactive effects. The number of isolates that showed growth was increasingly inhibited as the water potential dropped, but some growth was still observable at ?99.56 bars. These findings could indicate that F. culmorum strains isolated from water have a physiological mechanism that permits survival in environments with low water potential. Propagules of Fusarium culmorum are transported long distances by river water, which could explain the severity of diseases caused by F. culmorum on cereal plants irrigated with river water and its interaction under hydric stress or moderate soil salinity. The observed differences in growth magnitude and capacity could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.  相似文献   

2.
The mortality of a clinical Helicobacter pylori strain was assessed by inoculating it in untreated well water, filtered well water, and autoclaved well water. Two different temperatures (5 and 25 °C) were used during the experimental period. Because Escherichia coli is commonly used as indicator of faecal pollution of water, we compared the survival of H. pylori using E. coli as indicator of its persistence. H. pylori was not culturable 48 h after inoculation, whereas the population of E. coli, monitored at the same temperature, decreased slowly, especially in filtered water. In untreated water, both H. pylori and E. coli survived less well than in filtered and autoclaved water. In general the survival of H. pylori and E. coli was better in filtered water than in autoclaved water and the ability of H. pylori to survive several days in water at 5 °C is reported, supporting the observation that H. pylori survives better at 5 °C than at higher temperature. This suggests a possible faecal–oral transmission of H. pylori in the presence of a contaminated water.  相似文献   

3.
玉米叶片水分利用效率的保守性   总被引:2,自引:0,他引:2  
周怀林  周广胜 《生态学报》2019,39(6):2156-2167
水分利用效率是植物个体或生态系统水分利用过程的重要特征参数,可表征不同时空尺度的植物碳-水耦合关系,对植物适应气候变化研究具有重要意义。以玉米为例,利用中国气象局固城农业气象野外科学试验基地2013—2014年玉米不同灌溉方案模拟试验资料,对不同叶位叶片的水分利用效率特征及其影响因素进行分析。结果表明:植株顶部第1片叶片水分利用效率在拔节期和乳熟期呈现明显的峰值,反映出明显的周期变化规律及其与叶片生理生态特征的紧密相关。在相同环境条件下,不同叶位叶片的水分利用效率不存在显著性差异,即玉米叶片水分利用效率具有空间稳定性与叶龄保守性。同时,研究指出叶片光合速率和蒸腾速率在叶位之间的协调变化是导致空间稳定性和叶龄保守性的主要原因。研究结果可为植物水分关系研究提供参考,也可为水分利用效率的尺度化研究提供依据。  相似文献   

4.
The stable isotopes 2H and 18O were used to determine the water sources of Eucalyptus camaldulensis at three sites with varying exposure to stream water, all underlain by moderately saline groundwater. Water uptake patterns were a function of the long-term availability of surface water. Trees with permanent access to a stream used some stream water at all times. However, water from soils or the water table commonly made up 50% of these trees' water. Trees beside an ephemeral stream had access to the stream 40–50% of the time (depending on the level of the stream). No more than 30% of the water they used was stream water when it was available. However, stream water use did not vary greatly whether the trees had access to the stream for 2 weeks or 10 months prior to sampling. Trees at the third site only had access to surface water during a flood. These trees did not change their uptake patterns during 2 months inundation compared with dry times, so were not utilising the low-salinity flood water. Pre-dawn leaf water potentials and leaf 13C measurements showed that the trees with permanent access to the stream experienced lower water stress and had lower water use efficiencies than trees at the least frequently flooded site. The trees beside the ephemeral stream appeared to change their water use efficiency in response to the availability of surface water; it was similar to the perennial-stream trees when stream water was available and higher at other times. Despite causing water stress, uptake of soil water and groundwater would be advantageous to E. camaldulensis in this semi-arid area, as it would provide the trees with a supply of nutrients and a reliable source of water. E. camaldulensis at the study site may not be as vulnerable to changes in stream flow and water quality as previously thought.  相似文献   

5.
The species Trichoderma harzianum was analyzed as possible biocontrol agent of Alternaria alternata under different environmental conditions (water activity and temperature). The strains were analyzed macroscopically to obtain the Index of Dominance. The analysis was completed using two microscopic techniques. T. harzianum showed dominance on contact over A. alternata at all testing temperatures and water activities tested except at 0.95 a w and 15 °C, at which T. harzianum inhibited A. alternata at a distance. Biocontrol was governed by different mechanisms such as competition for space and nutrients, mycoparasitism, and possible antibiosis. Temperature and water activity significantly influenced fungal growth rate.  相似文献   

6.
Summary Leaf gas exchange, transpiration, water potential and xylem water flow measurements were used in order to investigate the daily water balance of intact, naturally growing, adult Larix and Picea trees without major injury. The total daily water use of the tree was very similar when measured as xylem water flow at breast height or at the trunk top below the shade branches, or as canopy transpiration by a porometer or gas exchange chamber at different crown positions. The average canopy transpiration is about 12% lower than the transpiration of a single twig in the sun crown of Larix and Picea. Despite the similarity in daily total water flows there are larger differences in the actual daily course. Transpiration started 2 to 3 h earlier than the xylem water flow and decreased at noon before the maximum xylem water flow was reached, and stopped in the evening 2 to 3 h earlier than the water flow though the stem. The daily course of the xylem water flow was very similar at the trunk base and top below the lowest branches with shade needles. The difference in water efflux from the crown via transpiration and the water influx from the trunk is caused by the use of stored water. The specific capacitance of the crown wood was estimated to be 4.7 x 10-8 and 6.3 x 10-8 kg kg-1 Pa-1 and the total amount of available water storage was 17.8 and 8.7 kg, which is 24% and 14% of the total daily transpiration in Larix and Picea respectively. Very little water was used from the main tree trunk. With increasing transpiration and use of stored water from wood in the crown, the water potential in the foliage decreases. Plant water status recovers with the decrease of transpiration and the refilling of the water storage sites. The liquid flow conductance in the trunk was 0.45 x 10-9 and 0.36 x 10-9 mol m-2s-1 Pa-1 in Larix and Picea respectively. The role of stomata and their control by environmental and internal plant factors is discussed.  相似文献   

7.
The response of photosynthesis and respiration of the intertidal brown alga Fucus spiralis L. to light and temperature at ambient and elevated concentrations of inorganic carbon was investigated. The light-saturated rate of photosynthesis was greater in air at 15° C and 20° C, but greater in water at 10° C. Light compensation point and Ik was about 50% lower under submerged relative to emerged conditions, whereas the initial slope of photosynthesis versus irradiance was higher, except at 20° C. Under both submerged and emerged conditions light-saturated photosynthesis was limited to a similar degree (78%, and 65%, respectively) by the availability of inorganic carbon at naturally occuring concentrations. In air, slight desiccation at tissue water contents of about 96% to 92% caused a stimulation in the rate of net photosynthesis to 110–148% of fully hydrated fronds. At lower water contents the rate of net photosynthesis declined linearly with decreasing water content and became zero at a water content of about 15%. Dark respiration declined linearly with tissue water content and remained positive to a water content of 8%. Upon reimmersion the fronds showed a complete recovery within 35 min following desiccation to a water content of 20–30%. Thus F. spiralis seems to be very tolerant to desiccation. Since F. spiralis photosynthesizes effectively in air, even at a higher rate than in water as long as it has not lost a large proportion of its water in desiccation, the alternating exposure to air may be beneficial by increasing the daily carbon gain compared to a fully submerged situation.  相似文献   

8.
Water is a main factor limiting plant growth. Integrative responses of leaf traits and whole plant growth to drought will provide implications to vegetation restoration. This study investigated the drought responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. with a focus on leaf morphology and physiology, seedling growth and biomass partitioning. Potted 1-year-old seedlings were subjected to four water supply regimes [75, 55, 35 and 15% field capacity (FC)], served as control, mild water stress, moderate water stress and severe water stress. Leaf morphological traits varied to reduce the distance of water transfer under water stress and leaflets were dispersed with drought. Net photosynthetic rate decreased significantly under water stress: stomatal closure was the dominant limitation at mild and moderate drought, while metabolic impairment was dominant at severe drought. The physiological impairment at severe drought could also be detected from the relative lower water use efficiency and non-photochemical quenching to moderate water stress. Total biomass of well-watered plants was more than twice that at moderate water deficit and nearly ten times that at severe water deficit. In summary, V. negundo var. heterophylla had adaptation mechanism to water deficit even in the most serious condition, but different strategies were adopted. Seedlings invested more photosynthate to roots at mild and moderate drought while more photosynthate to leaves at severe drought. A nearly stagnant seedling growth and a sharp decline of total biomass were the survival strategy at severe water stress, which was not favorable to vegetation restoration. Water supply above 15% FC is recommended for the seedlings to vegetation restoration.  相似文献   

9.
Many local scale studies have shown that bats respond to water quality degradation or urbanization in a species‐specific manner. However, few have separated the effects of urbanization versus water quality degradation on bats, in single city or single watershed case studies. Across North Carolina, USA, we used the standardized North American Bat Monitoring Program mobile transect protocol to survey bat activity in 2015 and 2016 at 41 sites. We collected statewide water quality and urban land cover data to disentangle the effects of urbanization and water quality degradation on bats at the landscape scale. We found that statewide, water quality degradation and urbanization were not correlated. We found that bats responded to water quality degradation and urbanization independently at the landscape scale. Eptesicus fuscus and Lasiurus cinereus negatively responded to water quality degradation. Lasiurus borealis and Perimyotis subflavus positively responded to water quality degradation. Lasionycteris noctivagans did not respond to water quality degradation but was more active in more urbanized areas. Tadarida brasiliensis positively responded to urbanization and was less active in areas with degraded water quality. We show that bat–water quality relationships found at the local scale are evident at a landscape scale. We confirm that bats are useful bioindicators for both urbanization and water quality degradation. We suggest that water quality can be used to predict the presence of bat species of conservation concern, such as P. subflavus, in areas where it has not been studied locally.  相似文献   

10.
Leaf water (Ψ) and solute (ψ) potential were measured in field sorghum and maize under well irrigated (I) and dryland (NI) conditions throughout a season. Despite decreases in ψ due to slow soil water depletion and to apparent increases in liquid phase plant resistance, midday leaf turgor (ψp) in the NI sorghum was maintained at similar levels as in the I treatment throughout the season due to concomitant decreases in ψs. Osmotic adjustment was also observed in maize, although ψp was significantly lower in the NI treatment as compared to I during the final stages of grain filling. A seasonal shift in the ψ vs. relative water content relation of NI sorghum leaves was observed, more water being retained by the older leaf at any particular ψ. The major factor for turgor maintenance was a net increase in solutes per unit of tissue. The role played by increases in the proportion of tissue volume occupied by cell wall was also evaluated. No stomatal closure due to water stress was found in NI sorghum even though leaf ψ reached —20 bars late in the season. Under similar conditions, stomata closed at —14 to —16 bars in younger plants where water stress was made to develop much faster.  相似文献   

11.
Summary Free-proline accumulation was measured in leaves of intact wheat (Triticum vulgare L. cv. Kalyan Sona), plantago (Plantago ovata Forsk-Isabgool), papavar (Papaver somnifera L. Opium poppy) and mustard (Brassica juncea L. var. Varuna) grown in the field with low to high field water content and thus they were subjected to water stress. Leaf water deficit in percentage was used to determine the degree of stress at the time of proline anlysis.Free proline content was higher in mustard leaves as compared to wheat, plantago and papavar leaves. Water stress enhances the proline content but at same water deficit level the content differ in the leaves of the plants studied.  相似文献   

12.
Dorycnium hirsutum (L.) Ser. and Dorycnium rectum (L.) Ser. are Mediterranean perennial legumes that may have potential as alternative forage plants to Medicago sativa (lucerne, alfalfa) for low rainfall dryland agriculture. Strategies for surviving periods of water deficit are vital for perennial plants in water-limited environments. This experiment compared leaf physiological and morphological adaptations to increasing water deficit among D. hirsutum, D. rectum and M. sativa. Plants were grown in the glasshouse in large pots (7.8 L, 1 m deep, 10 cm diameter) containing a sandy clay loam (14% available water content) to limit differences between root foraging among the species. Watering was withheld for 21 days and predawn and midday leaf water and osmotic potential were determined. Mid-morning rates of gas exchange were measured at five times as soil water was depleted. After 35 days of withholding water, plant recovery was measured. D. hirsutum and M. sativa reduced stomatal conductance at leaf water potentials below −1.8 MPa and water-stressed D. hirsutum osmotically adjusted by up to 0.68 MPa. D. rectum differed from the other species; leaf water potential was maintained at high levels until soil water content had reached low levels, and reductions in stomatal conductance and photosynthesis were not associated with leaf water potential. D. hirsutum and M. sativa displayed leaf morphological adaptations that may contribute to greater resistance of water deficit. Only one of five D. rectum plants survived the water-stress treatment compared to five of five for D. hirsutum and four of five for M. sativa. The water relations and physiology of D. hirsutum observed in this study suggest that it possesses adaptations suitable for arid environments. On the other hand, the poor survival and water relations of D. rectum indicate that it is poorly adapted to situations where water deficit is common.  相似文献   

13.
Halophilic Bdellovibrio, which is parasitic and lytic to Vibrio parahaemolyticus, was isolated from fresh sea water in the winter. It had a lethal effect on V. parahaemolyticus. The optimum temperature for multiplication ranged from 25 C to 30 C and growth was not observed at 35 C. Plaque numbers of the isolate reached a maximum in 17 hr under conditions of shaking at 25 C in autoclaved sea water supplemented with V. parahaemolyticus cells, and were as high as ten times the number of host cells. With respect to the host-suspended medium, the isolate multiplied in natural sea water ten times more than in Herbst's artificial sea water but did not grow in saline. V. parahaemolyticus, Vibrio alginolyticus and several species in the Vibrio genus were susceptible to the parasite on the basis of plaque formation but Escherichia coli and Staphylococcus aureus were not.  相似文献   

14.
Summary Leaves of well-watered and mildly water-stressed seedlings of Betula pendula Roth. and Gmelina aroborea L. were subjected to a range of vapour pressure deficits (VPD) between 10 and 24 kPa. The stomatal conductance of birch seedlings decreased as VPD was increased and at least in mildly-stressed seedlings this response seemed to be closely linked to the water status of the air rather than to the bulk water status of the plant. Mild water stressing enhanced the degree of the stomatal humidity-response and resulted in a significant increase in the efficiency of water use at high VPD. Stomata of Gmelina were apparently insensitive to variation in VPD, but were more sensitive to a decrease in bulk leaf water status than were stomata of birch. Water use efficiency of Gmelina seedlings was comparatively high, even when VPD was high and the stomata were fully open.  相似文献   

15.
Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.  相似文献   

16.
Summary The water balance of three different sized coexisting species of heteromyid rodents (Dipodomys merriami ca. 39 g;Perognathus fallax ca. 23 g;Perognathus longimembris ca. 9 g) was assessed while consuming two different diets (either wheat or hulled sunflower) at ambient temperatures of 15–30°C. The metabolism of wheat as the sole food source was calculated to provide a greater metabolic water production (MWP) than the consumption of sunflower seed because of their different composition. The state of water balance was assessed by measuring urine concentrations and body weight maintenance on each diet at each temperature. Both measures showed that (i) all species were able to maintain a more positive water on the higher MWP seed, (ii) for all species there was an ambient temperature above which water balance could no longer be maintained, (iii) that this temperature was higher with the higher MWP food source and (iv) water regulatory efficiency was negatively correlated with body mass.Dipodomys showed a reduced digestive efficiency compared toPerognathus. When presented with both seedsDipodomys showed no preference for either seed irrespective of the state of water balance whilst thePerognathus species showed a tendency for an increased preference for the high MWP food source at the higher ambient temperatures. The ecological implications of these findings are discussed.  相似文献   

17.
18.
Casual observations had shown that, in laboratory cultures, populations of Ceriodaphnia quadrangula (O. F. Muller) rarely persisted for more than a month at most. It is shown here that populations of C. quadrangula can be maintained in static water on a diet of mixed algae (mainly Scenedesmus quadricauda (Turp.) Brev., but if the water is disturbed by a slow current of ascending air bubbles, the numbers of C. quadrangula decline. Death is not, however, immediate, and at high densities populations may persist in disturbed water for several weeks before numbers start to decline. Numbers of C. quadrangula did not decline in disturbed water when the food was changed from the alga Scenedesmus to the animal Artemia salina (L.). Individuals of C. quadrangula in the presence of decomposing naupliar larvae of A. salina grew as well in disturbed as in static water and in static water their numbers increased at a greater rate on this animal diet than on an algal diet of Scenedesmus. When the bacterial populations associated with Scenedesmus were greatly reduced, there was no increase in the numbers of C. quandrangula. Microbes associated with Scenedesmus, and not the alga per se, seem to be used as food by C. quandrangula.  相似文献   

19.
Differences in plant resistance to water flow, patterns of water transport through stems, and stomatal behavior were studied on three species native to the exceptionally hot and dry habitat of Death Valley, California (—, and Larrea divaricata). Dawn xylem water potentials in July for Atriplex were — 27.5 bar under natural conditions. Corresponding values for Tidestromia and Larrea were respectively — 8.0 bar and -32.0 bar (natural) and — 7.5 bar and — 18.0 bar (irrigated). Recovery of xylem water potential in covered field plants of an irrigated transplant garden reached a maximum value in July of — 9.5 bar in Atriplex, — 5.7 bar in Tidestromia and — 7.0 bar in Larrea. Resistance to free-energy transfer was used to study resistance to water transport through the plants. Under field conditions irrigated Atriplex plants gave a whole plant resistance of 20.70 × 106 s cm-1, as compared lo 18.37 × 106 s cm-1 for Larrea and 10.01 × 106 s cm-1 for Tidestromia. Plant resistance to water How computed by this method on Atriplex plants grown under laboratory conditions gave a value of 3.73 × 106 s cm-1 at 35C. Paths of water flow in field plants as investigated with injected acid fuchsin indicated a sectorial straight type vessel. The relationship between transpiration rates and xylem water potentials in Atriplex hymenelytra was linear between transpiration 1.28 μg cm-2 s-1 and 2.35 μg cm-2 s-1 at 35°C. These results indicate that according to the Van den Honert model for water transport, plant resistance to water flow remained rather constant at this temperature. In Atriplex grown under laboratory conditions there was an adjustment of plant resistance so change in water flux at 9.5°C and 25°C. When laboratory-grown plants of Atriplex and Tidestromia were subjected to water stress by withholding water. Tidestromia closed stomata and reduced transpiration rates at higher water potentials than in Atriplex. The ratio of vapor pressure gradients of leaf/air to leaf diffusion resistance was proportional lo transpiration rates. It is suggested that Atriplex hymenelytra is a species that combines strong regulation of water loss by stomata with low efficiency of the water transport system. These plants are unable to prevent depression of plant water potential as transpiration increases. On the other hand. Tidestromia oblongifolia has little stomatal regulation of transpiration and a highly efficient water transport system. These plants sustain very high rates of transpiration without significant decrease in plant water potential.  相似文献   

20.
Microenvironmental factors and physiological parameters (such as water potential, activity of ribulose 1,5-bisphosphate carboxylase (RuBPcase), levels of ribulose 1,5-bisphosphate (RuBP), 3-phosphoglyceric acid (PGA) and sucrose in leaves) affecting photosynthetic processes of the typical vernal species Erythronium japonicum Decne. were examined on the floor of a deciduous broad-leaved Quercus mongolica forest (Q.m. stand) and on bare land left undisturbed for 7 years after forest clearing (bare stand). Daytime solar radiation and the air and leaf temperatures at the bare stand were significantly higher than those at the Q.m. stand. The relative air humidity was very low and did not differ much between the stands, whereas the leaf–air vapor pressure difference (VPD) at the bare stand was twice as high as that at the Q.m. stand. The water potential in leaves at the bare stand was lower than two times that at the Q.m. stand. Therefore, the aboveground parts of the plants at the bare stand were subjected to much more severe heat stress than those at the Q.m. stand. When these environmental factors observed at the bare stand were reproduced in an assimilation chamber, the rate of photosynthetic CO2 uptake, stomatal conductance and water potential in leaves were significantly low in comparison with those when the factors at the Q.m. stand were simulated. The internal CO2 partial pressure in leaves at the bare stand was considerably lower than that at the Q.m. stand. Consequently, the decrease in the photosynthetic rate of the plants at the bare stand was caused mainly by a decrease in stomatal conductance through a lowering of water potential due to subjection of the aboveground parts to much more severe heat stress than that at the Q.m. stand. The possibility that an inhibition of the photosynthetic carbon fixation metabolism induced by the decrease in water potential contributes to the reduction in photosynthetic CO2 uptake in the plants at the bare stand is also discussed in light of physiological characteristics such as the activity of RuBPcase and levels of PGA, RuBP and sucrose in the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号