首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The real (G') and imaginary (G") components of the complex modulus have been measured between 0.1 and 100 rad/s in the temperature range of 70--55 degrees C for a mixture of 1% high acyl gellan with 79% glucose syrup, and 79% glucose syrup. The method of reduced variables gave superposed curves of G' and G" as a function of timescale of measurement, which matched the thermal profiles of shear modulus obtained by scanning at the constant rate of 1 degrees C/min. Data of the gellan/co-solute mixture could be analysed in terms of two distinct mechanisms. For the alpha dispersion, G' and G" superposed with the horizontal reduction factor a(T) whose temperature dependence followed an equation of the Williams-Landel-Ferry form. Mechanical spectra of the beta dispersion also superposed with the factor a(T) whose temperature dependence, however, corresponded to a constant energy of activation. Relaxation spectra have been calculated for both dispersions. Those for the alpha mechanism were attributed to the chain backbone motions and the friction coefficient per tetrasaccharide repeat unit in backbone motion was calculated from the extended Rouse theory. When the contribution of the solvent alone was studied, no spectra for the beta dispersion were observed supporting the hypothesis of the dispersion being attributed to the side-chain motions of the acyl groups. The spectra of the beta mechanism were relatively broader than for the alpha dispersion. The relative location of the beta dispersion on the time scale or temperature range was found to be between the alpha dispersion (glass transition region) and the glassy state.  相似文献   

2.
A novel hydrogel was obtained by reticulation of chitosan with dextrin enzymatically linked to vinyl acrylate (dextrin-VA), without cross-linking agents. The hydrogel had a solid-like behaviour with G′ (storage modulus) >> G″ (loss modulus). Glucose diffusion coefficients of 3.9 × 10−6 ± 1.3 × 10−6 cm2/s and 2.9 × 10−6 ± 0.5 × 10−6 cm2/s were obtained for different substitution degrees of the dextrin-VA (20% and 70% respectively). SEM observation revealed a porous structure, with pores ranging from 50 μm to 150 μm.  相似文献   

3.
M Wang  F Y Zhuang  T Tian 《Biorheology》1988,25(3):539-544
Hartert's thromboelastography has been used in the diagnosis of abnormal blood clotting for more than 20 years. From a thromboelastogram three parameters are obtained, viz, the reaction time 'r', the rate of formation of fibrin clot 'k', the maximum elasticity of thrombus 'amax'. It is desirable, however, to know the equation that describes the thromboelastogram both in the period in which the complex modulus increases with time because of coagulation, and in the period in which the complex modulus decreases with time because of fibrinolysis. The parameters of the equation could then be used as a diagnostic criterion; yielding information on the mechanism of coagulation and fibrinolysis. Based on our experimental results on human blood in normal and abnormal subjects, we found that the complex modulus of thromboelastograms can be expressed by the sum of two terms, one describing the increase of the complex modulus during coagulation, G1 = G'1 Exp (-tau 1/t), the other describing the decrease of the complex modulus during fibrinolysis, G2 = G'2 Exp (-tau 2/(t-D) when t greater than D. G2 = 0 when t less than D. The compound complex modulus from coagulation to fibrinolysis is G = G1 - G2. Here t is the clotting time, and G'1, G'2, tau 1, tau 2, and D are five constants to be identified. These five constants can be used for diagnostic and prognostic purposes.  相似文献   

4.
Mo Y  Kubota K  Nishinari K 《Biorheology》2000,37(5-6):401-408
It was found that solutions of calcium hyaluronate (CaHA) (0.1 to approximately 0.5 wt%) could form a gel by mixing with solutions of sodium type gellan (0.1 to approximately 0.5 wt%), although neither polymer by itself forms a gel at low concentrations (0.1 to approximately 0.5 wt% in this experiment). The rheological properties of CaHA-gellan mixtures were investigated by dynamic and steady shear measurements. Both storage shear modulus G' and loss shear modulus G' for CaHA-gellan mixtures increased with increasing time, and tended to an equilibrium value after 1 h. After reaching steady values of G' and G", the frequency dependence of G' and G' was observed. G' was always larger than G' in the accessible frequency range from 10(-2) to 10(2) rad/s. The effects of pH and calcium ions were examined. Gel formation of the mixtures was promoted by decreasing pH and adding from 0.01 to 0.1 M calcium ions, but excessive calcium ions weakened the gel.  相似文献   

5.
We investigated the rheological properties of living human airway smooth muscle cells in culture and monitored the changes in rheological properties induced by exogenous stimuli. We oscillated small magnetic microbeads bound specifically to integrin receptors and computed the storage modulus (G') and loss modulus (G") from the applied torque and the resulting rotational motion of the beads as determined from their remanent magnetic field. Under baseline conditions, G' increased weakly with frequency, whereas G" was independent of the frequency. The cell was predominantly elastic, with the ratio of G" to G' (defined as eta) being approximately 0. 35 at all frequencies. G' and G" increased together after contractile activation and decreased together after deactivation, whereas eta remained unaltered in each case. Thus elastic and dissipative stresses were coupled during changes in contractile activation. G' and G" decreased with disruption of the actin fibers by cytochalasin D, but eta increased. These results imply that the mechanisms for frictional energy loss and elastic energy storage in the living cell are coupled and reside within the cytoskeleton.  相似文献   

6.
Ikeda S  Nishinari K 《Biopolymers》2001,59(2):87-102
Macroscopic and molecular structural changes during heat-induced gelation of beta-lactoglobulin, bovine serum albumin, ovalbumin, and alpha-lactalbumin aqueous dispersions were probed by the mechanical and CD spectroscopy, respectively. Aqueous solutions of the native globular proteins, except for alpha-lactalbumin, exhibited solid-like mechanical spectra-namely, the predominant storage modulus G' over the loss modulus G" in the entire frequency range examined (0.1-100 rad/s), suggesting that these protein solutions were highly structured even before gelation, possibly due to strong repulsions among protein molecules. Such solid-like structures were susceptible to nonlinearly large shear but recovered almost immediately at rest. During gelation by isothermal heating, major changes in the secondary structure of the globular proteins completed within a few minutes, while values of the modulus continued to develop for hours with maintaining values of tandelta (= G"/G') less than unity. As a result, a conventional criterion for mechanically defining the gelation point, such as a crossover between G' and G", was inapplicable to these globular protein systems. beta-Lactoglobulin gels that had passed the gelation point satisfied power laws (G' approximately G" approximately omega(n)) believed to be valid only at the gelation point, suggesting that fractal gel networks, similar to those of critical gels (i.e., gels at the gelation point), were formed.  相似文献   

7.
Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G(*)(omega)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1-100 Hz) and at different loading forces (0.1-0.9 nN) with atomic force microscopy. G(*)(omega) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic viscous drag. Both cell types displayed similar viscoelastic properties. The storage modulus G'(omega) increased with frequency following a power law with exponent approximately 0.2. The loss modulus G"(omega) was approximately 2/3 lower and increased similarly to G'(omega) up to approximately 10 Hz, but exhibited a steeper rise at higher frequencies. The cells showed a weak force dependence of G'(omega) and G"(omega). G(*)(omega) conformed to the power-law model with a structural damping coefficient of approximately 0.3, indicating a coupling of elastic and dissipative processes within the cell. Power-law behavior implies a continuum distribution of stress relaxation time constants. This complex dynamics is consistent with the rheology of soft glassy materials close to a glass transition, thereby suggesting that structural disorder and metastability may be fundamental features of cell architecture.  相似文献   

8.
The rheology of neutrophils in their passive and activated states plays a key role in determining their function in response to inflammatory stimuli. Atomic force microscopy was used to study neutrophil rheology by measuring the complex shear modulus G*(omega) of passive nonadhered rat neutrophils on poly(HEMA) and neutrophils activated through adhesion to glass. G*(omega) was measured over three frequency decades (0.1-102.4 Hz) by indenting the cells 500 nm with a spherical tip and then applying a 50-nm amplitude multi-frequency signal. G*(omega) of both passive and adhered neutrophils increased as a power law with frequency, with a coupling between elastic (G') and loss (G') moduli. For passive neutrophils at 1.6 Hz, G' = 380 +/- 121 Pa, whereas G' was fourfold smaller and the power law coefficient was of x = 1.184. Adhered neutrophils were over twofold stiffer with a lower slope (x = 1.148). This behavior was adequately described by the power law structural damping model but not by liquid droplet and Kelvin models. The increase in stiffness with frequency may modulate neutrophil transit, arrest, and transmigration in vascular microcirculation.  相似文献   

9.
The purpose of this study was to examine the viscoelastic properties of topical creams containing various concentrations of microcrystalline cellulose and sodium carboxymethyl cellulose (Avicel(R) CL-611) as a stabilizer. Avicel CL-611 was used at 4 different levels (1%, 2%, 4%, and 6% dispersion) to prepare topical creams, and hydrocortisone acetate was used as a model drug. The viscoelastic properties such as loss modulus (G"), storage modulus (G'), and loss tangent (tan delta) of these creams were measured using a TA Instruments AR 1000 Rheometer and compared to a commercially available formulation. Continuous flow test to determine the yield stress and thixotropic behavior, and dynamic mechanical tests for determining the linear viscosity time sweep data, were performed. Drug release from the various formulations was studied using an Enhancer TM Cell assembly. Formulations containing 1% and 2% Avicel CL-611 had relative viscosity, yield stress, and thixotropic values that were similar to those of the commercial formulation. The elastic modulus (G') of the 1% and 2% formulation was relatively high and did not cross the loss modulus (G"), indicating that the gels were strong. In the commercial formulation, G' increased after preshearing and broke down after 600 seconds. The strain sweep tests showed that for all formulations containing Avicel CL-611, the G' was above G" with a good distance between them. The gel strength and the predominance of G' can be ranked 6% > 4% > 2%. The strain profiles for the 1% and 2% formulations were similar to those of the commercial formulation. The delta values for the 1% and 2% formulations were similar, and the formulations containing 4% Avicel CL-611 had lower delta values, indicating greater elasticity. Drug release from the commercial preparation was fastest compared to the formulations prepared using Avicel CL-611, a correlation with the viscoelastic properties. It was found that viscoelastic data, especially the strain sweep profiles of products containing Avicel CL-611 1% and 2%, correlated with the commercial formulation. Rheological tests that measure the viscosity, yield stress, thixotropic behavior, other oscillatory parameters such as G' and G" are necessary tools in predicting performance of semisolids.  相似文献   

10.
We investigated the effect of the cytoskeletal prestress (P) on the elastic and frictional properties of cultured human airway smooth muscle cells during oscillatory loading; P is preexisting tensile stress in the actin cytoskeleton generated by the cell contractile apparatus. We oscillated (0.1 Hz, 6 Pa peak to peak) small ferromagnetic beads bound to integrin receptors and computed the storage (elastic) modulus (G') and the loss (frictional) modulus (G") from the applied torque and the corresponding bead rotation. All measurements were done at baseline and after cells were treated with graded doses of either histamine (0.1, 1, 10 microM) or isoproterenol (0.01, 0.1, 1, 10 microM). Values for P for these concentrations were taken from a previous study (Wang et al., Am J Physiol Cell Physiol, in press). It was found that G' and G", as well as P, increased/decreased with increasing doses of histamine/isoproterenol. Both G' and G" exhibited linear dependences on P: G'(Pa) = 0.20P + 82 and G"(Pa) = 0.05P + 32. The dependence of G' on P is consistent with our previous findings and with the behavior of stress-supported structures. The dependence of G" on P is a novel finding. It could be attributed to a variety of mechanisms. Some of those mechanisms are discussed in detail. We concluded that, in addition to the central mechanisms by which stress-supported structures develop mechanical stresses, other mechanisms might need to be invoked to fully explain the observed dependence of the cell mechanical properties on the state of cell contractility.  相似文献   

11.
We measured the time course and heterogeneity of responses to contractile and relaxing agonists in individual human airway smooth muscle (HASM) cells in culture. To this end, we developed a microrheometer based on magnetic twisting cytometry adapted with a novel optical detection system. Ferromagnetic beads (4.5 microm) coated with Arg-Gly-Asp peptide were bound to integrins on the cell surface. The beads were twisted in a sinusoidally varying magnetic field at 0.75 Hz. Oscillatory bead displacements were recorded using a phase-synchronized video camera. The storage modulus (cell stiffness; G'), loss modulus (friction; G"), and hysteresivity (eta; ratio of G" to G') could be determined with a time resolution of 1.3 s. Within 5 s after addition of histamine (100 microM), G' increased by 2.2-fold, G" increased by 3.0-fold, and eta increased transiently from 0.27 to 0.34. By 20 s, eta decreased to 0.25, whereas G' and G" remained above baseline. Comparable results were obtained with bradykinin (1 microM). These changes in G', G", and eta measured in cells were similar to but smaller than those reported for intact muscle strips. When we ablated baseline tone by adding the relaxing agonist dibutyryl cAMP (1 mM), G' decreased within 5 min by 3.3-fold. With relaxing and contracting agonists, G' could be manipulated through a contractile range of 7.3-fold. Cell populations exhibited a log-normal distribution of baseline stiffness (geometric SD = 2.8) and a heterogeneous response to both contractile and relaxing agonists, partly attributable to variability of baseline tone between cells. The total contractile range of the cells (from maximally relaxed to maximally stimulated), however, was independent of baseline stiffness. We conclude that HASM cells in culture exhibit a clear, although heterogeneous, response to contractile and relaxing agonists and express the essential mechanical features characteristic of the contractile response observed at the tissue level.  相似文献   

12.
The microstructure, kinetics of gelation, and rheological properties have been investigated for gels of nonamidated pectin (C30), amidated pectin (G), and saponified pectin (sG) at different pH values, both with and without sucrose. The low-methoxyl (LM) pectin gels were characterized in the presence of Ca(2+) by oscillatory measurements and transmission electron microscopy (TEM). The appearance of the gel microstructure varied with the pH, the gel structure being sparse and aggregated at pH 3 but dense and somewhat entangled at pH 7. During gel formation of pectins G and C30 at pH 3 there was a rapid increase in G' initially followed by a small increase with time. At pH 7 G' increased very rapidly at first but then remained constant. The presence of sucrose influenced neither the kinetic behavior nor the microstructure of the gels but strongly increased the storage modulus. Pectins G and C30 showed large variations in G' at pH values 3, 4, 5, and 7 in the presence of sucrose, and the maximum in G' in the samples occurred at different pH values. Due to its high Ca(2+) sensitivity, pectin sG had a storage modulus that was about 50 times higher than that of its mother pectin G at pH 7.  相似文献   

13.
Shear linear behavior of brain tissue over a large frequency range   总被引:3,自引:0,他引:3  
The literature review about the shear linear properties of brain tissue reveals both a large discrepancy in the existing data and a crucial lack of information at high frequencies associated with traffic road and non-penetrating ballistic impacts. The purpose of this study is to clarify and to complement the linear material characterisation of brain tissue. New data at small strains and high frequencies were obtained from oscillatory experiments. The tests were performed on thin porcine white matter samples (corona radiata) using an original custom-designed oscillatory shear testing device. At 37 degrees C, the results showed that the mean storage modulus (G') and the mean loss modulus (G') increased with the frequency (0.1 to 6310 Hz) from 2.1+/-0.9 kPa to 16.8+/-2.0 kPa and from 0.4+/-0.2 kPa to 18.7+/-2.3 kPa respectively. The reliability of these new dynamic data was checked over a partially common frequency range by conducting similar experiments using a standard rheometer (Bohlin C-VOR 150). Data were also compared in the time field. From these experiments, the relaxation modulus (G(t)) was found to decrease from 24.4+/-2.1 kPa to 1.0+/-0.3 kPa between 10(-5) s and 270 s.  相似文献   

14.
This study describes the effect of actin-binding protein derived from rabbit lung macrophages on the mechanical properties of F-actin. The dynamic storage modulus, G'(omega), and loss modulus, G"(omega) of F-actin, at concentrations from 1 to 4 mg/ml, in the absence or presence of actin-binding protein at molar ratios to actin of 1:1000 to 1:125, were measured at frequencies ranging from 3 X 10(-3) to 0.5 Hz. Actin-binding protein increased the dynamic moduli of F-actin, but this increase was much greater as either the actin-binding protein/actin ratio or the total protein concentration increased. Moreover, there was a convergence of the values of G' and G" at high frequencies for F-actin which became more prominent upon the addition of actin-binding protein. The value of the modulus obtained by an extrapolation of these data to actin concentrations similar to that found in the cell cortex was close to values which have been obtained by direct measurements. The addition of actin-binding protein to an F-actin solution enabled it to reach an equilibrium strain following the application of a stress, in contrast to pure F-actin. These data allow a more rigorous definition of the "sol" to "gel" transition and suggest that the cross-linking of actin filaments by actin-binding protein leads to the formation of a network structure whose underlying mechanism of mechanical behavior is short range intrafilament bending in contrast to the classical rubber network.  相似文献   

15.
Films of hyaluronan (HA) and a phosphorylcholine-modified chitosan (PC-CH) were constructed by the polyelectrolyte multilayer (PEM) deposition technique and their buildup in 0.15 M NaCl was followed by atomic force microscopy, surface plasmon resonance spectroscopy (SPR), and dissipative quartz crystal microbalance (QCM). The HA/PC-CH films were stable over a wide pH range (3.0-12.0), exhibiting a stronger resistance against alkaline conditions as compared to HA/CH films. The loss and storage moduli, G' and G", of the films throughout the growth of eight bilayer assemblies were derived from an impedance analysis of the QCM data recorded in situ. Both G' and G" values were one order of magnitude lower than the moduli of HA/CH films. The fluid gel-like characteristics of HA/PC-CH multilayers were attributed to their high water content (50 wt %), which was estimated by comparing the surface coverage values derived from SPR and QCM measurements. Given the versatility of the PEM methodology, HA/PC-CH films are attractive tools for developing biocompatible surface coatings of controlled mechanical properties.  相似文献   

16.
The formation of gel network structures during isothermal heating of whey protein aqueous dispersions was probed by mechanical spectroscopy. It was anticipated that the pathway of the sol-to-gel transition of whey protein dispersions is quite different from that of ordinary cross-linking polymers (e.g., percolation-type transition), since aqueous solutions of native whey proteins have been shown to be highly structured even before gelation, in our previous study. At 20 degrees C, aqueous dispersions of beta-lactoglobulin, the major whey protein, and those of whey protein isolate (WPI), a mixture of whey proteins, exhibited solid-like mechanical spectra, i.e., the predominant storage modulus G' over the loss modulus G", in a certain range of the frequency omega (1-100 rad/s), regardless of the presence or absence of added NaCl. The existence of the added salt was, however, a critical factor for determining transitions in mechanical spectra during gelation at 70 degrees C. beta-Lactoglobulin dispersions in 0.1 mol/dm(3) NaCl maintained the solid-like nature during the entire gelation process and, after passing through the gelation point, satisfied parallel power laws (G' approximately G" approximately omega(n)) that have been proposed for a critical gel (i.e., the gel at the gelation point) that possesses a self-similar or fractal network structure. In contrast, beta-lactoglobulin dispersions without added salt exhibited a transition from solid-like [G'(omega) > G"(omega)] to liquid-like [G'(omega) < G"(omega)] mechanical spectra before gelation, but no parallel power law behavior was recognized at the gelation point. During extended heating time (aging), beta-lactoglobulin gels with 0.1 mol/dm(3) NaCl showed deviations from the parallel power laws, while spectra of gels without added NaCl approached the parallel power laws, suggesting that post-gelation reactions also significantly affect gel network structures. A percolation-type sol-to-gel transition was found only for WPI dispersions without added salt.  相似文献   

17.
Dynamic light scattering (DLS) and rheological measurements were performed on aqueous silk fibroin solutions extracted from the middle division of Bombyx mori silkworm over a wide range of polymer concentration C from 0.08 to 27.5 wt %. DLS results obtained in the dilute region of C less than 1 wt % are consistent with a model that an elementary unit is a large protein complex consisting of silk fibroin and P25 with a 6:1 molar ratio. Rheological measurements in the dilute C region reveal that those units (or clusters) with the hydrodynamic radius of about 100 nm form a network extending over the whole sample volume with small pseudoplateau modulus mainly by ionic bonding between COO(-) ions of the fibroin molecules and divalent metallic ions such as Ca(2+) or Mg(2+) ions present in the sample and also that, after a yield stress is reached, steady plastic flow is induced with viscosity much lower than the zero-shear viscosity estimated from creep and creep recovery measurements by 4-6 orders of magnitude. Angular frequency omega dependencies of the storage and the loss shear moduli, G'(omega) and G' '(omega), measured in the linear viscoelastic region, indicate that all solutions possess the pseudoplateau modulus in the low omega region and samples become highly viscoleastic for C greater, similar 4.2 wt %. Above C = 11.2 wt % another plateau appears at the high omega end accompanied by a distinct maximum of G' ' in the intermediate omega region. The relaxation motion with tau = 0.5 s corresponding to the maximum of G' ' is one of characteristic properties of the fibroin solutions in the high C region. Thermorheological behaviors of the solution with C = 27.5 wt % show that the network structure formed in the MM part of the silk gland is susceptible to temperature and a more stable homogeneous network is realized by raising the temperature up to T = 65 degrees C.  相似文献   

18.
The aim of this work was to establish the diltiazem hydrochloride release mechanism from the chitosan-alginate matrix tablet (MCB/AS) and chitosan-carrageenan matrix tablet (MCS/CSI). The weight loss for MCS/CSI is mainly due to the weight loss of the matrix while for MCB/AS it is mainly due to the diltiazem hydrochloride released from the tablet. Using the Peppa's model the release order for MCS/CSI was n = 1.07 +/- 0.13 and for MCB/AS was n = 0.76 +/- 0.02. Thus, MCS/CSI has a transport mechanism, and for MCB/AS the drug release mechanism is a combined process of diffusion and relaxation. MCB/AS has an elastic modulus (G' = 10(5) Pa) one order of magnitude higher than MCS/CSI (G' = 10(4) Pa). MCB/AS is able to uptake solvent without disrupting the microstructure due to its high elastic modulus. Instead MCS/CSI showed a quick erosion process, which conducted to the tablet disintegration due to a fast solvent uptake process.  相似文献   

19.
The distribution function of Maxwellian relaxation times (phi) was derived from the small- deformation dynamic properties of high-sugar/agarose, /deacylated gellan and /high-methoxy pectin mixtures. First-approximation calculations of phi employed the time derivative of the experimentally measured storage and viscous moduli, with the two traces converging at the theoretically predicted slope of - 0.5. Second-approximation calculations were based on phi, as derived by the first approximation, being a simple power function of relaxation times (tau(-m)). The slope m was measured at various points and used to derive correction factors for shifting the relaxation function to the second approximation. Thus, values of phi calculated from G' and G" were brought into satisfactory agreement, particularly in the recorded portion of the glass transition region. Once the function phi is accurately determined, it can be readily used for calculations of other viscoelastic properties.  相似文献   

20.
For the first time it is clearly exhibited that synovial fluid (SF) is thixotropic. Although no hysteresis loops were observed for SF, not even at high shear rates, thixotropy may be exhibited by measuring the rate of recovery after extensive shearing. The rebuilding of the structure in a small-amplitude oscillatory state following the high-shear-rate state reveals the thixotropic behaviour. Five different viscoelastic parameters for various synovial fluids (SF) were obtained using oscillatory rheometry. It was also shown that for SF in the low frequency range, corresponding to a knee joint almost at rest, the shear loss modulus G" is greater than the shear storage modulus G', since the system is allowed to dissipate energy at rest. However, with movement, G' increases and eventually becomes greater than G" at a characteristic frequency above which the system has insufficient time to dissipate energy and hence responds as an elastic body. This functional behaviour, characteristic for normal SF, broke down in the SF of rheumatoid arthritis. It was also absent in the SF of knee joints with meniscus lesions and ligament defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号