首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma glutathione peroxidase (pGPx) is an extracellular antioxidative selenoenzyme which has been detected in various adult tissues, but little is known about the expression and distribution of pGPx during embryogenesis. To investigate the expression patterns of pGPx during embryogenesis, we performed quantitative real-time PCR, in situ hybridization, Western blot, and immunohistochemistry analyses in whole embryos or each developing organ of mice on embryonic days (E)7.5–18.5. In whole embryos of E7.5–8.5, pGPx mRNA was more typically expressed in extra-embryonic tissues including ectoplacental cone, trophectoderm, and decidual cells than in embryos. However, after E9.5, pGPx mRNA and protein levels were increased in the embryos with differentiation and growth, but trended to gradually decrease in the extra-embryonic tissues until E18.5. In sectioned embryonic tissues on E13.5–18.5, pGPx mRNA and protein were mainly expressed in the developing nervous tissues, the sensory organs, and the epithelia of lung, skin, and intestine, the heart and artery, and the kidney. In particular, pGPx immunoreactivity was very strong in the developing liver. These results indicate that pGPx is spatio-temporally expressed in various embryonic organs as well as extra-embryonic tissues, suggesting that pGPx may function to protect the embryos against endogenous and exogenous reactive oxygen species during organogenesis.  相似文献   

2.
3.
4.
5.
Homologues of Drosophila germ cell determinant genes such as vasa, nanos and tudor have recently been implicated in development of the male germline in mice. In the present study, the mouse gene encoding Tudor domain containing protein 5 (TDRD5) was isolated from a 12.5-13.5 days post coitum (dpc) male-enriched subtracted cDNA library. Whole-mount in situ hybridization analysis of Tdrd5 expression in the mouse embryonic gonad indicated that this gene is upregulated in the developing testis from 12.5 dpc, with expression levels remaining higher in testis than ovary throughout embryogenesis. Expression of Tdrd5 was absent in testes isolated from We/We embryos, which lack germ cells. In situ hybridization (ISH) on cryosectioned 13.5 dpc testes suggests that expression of Tdrd5, like that of Oct4, is restricted to germ cells. Northern hybridization analysis of expression in adult tissues indicated that Tdrd5 is expressed in the testis only, implying that expression of this gene is restricted to the male germline throughout development to adulthood.  相似文献   

6.
Both LPL and HL are synthesized in parenchymal cells, are secreted, and bind to endothelial cells. To learn where endothelial lipase (EL) is synthesized in adult animals, the localization of EL in mouse and rat liver was studied by immunohistochemical analysis. Furthermore, to test whether EL could play a role in atherogenesis, the expression of EL in the aorta and liver of apolipoprotein E knockout (EKO) mice was determined. EL in both mouse and rat liver was colocalized with vascular endothelial cells but not with hepatocytes. In contrast, HL was present in both hepatocytes and endothelial cells. By in situ hybridization, EL mRNA was present only in endothelial cells in liver sections. EL was also present at low levels in aorta of normal mice. We fed EKO mice and wild-type mice a variety of diets and determined EL expression in liver and aorta. EKO mice showed significant expression of EL in aorta. EL expression was lower in the liver of EKO mice than in normal mice. Cholesterol feeding decreased EL in liver of both types of mice. In the aorta, EL was higher in EKO than in wild-type mice, and cholesterol feeding had no effect. Together, these data suggest that EL may be upregulated at the site of atherosclerotic lesions and thus could supply lipids to the area.  相似文献   

7.
8.
In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.  相似文献   

9.
Alcohol and aldehyde dehydrogenases (ADHs and ALDHs) may be of interest in the pathology of Parkinson's disease (PD) because of their role in protection against toxins and in retinoid metabolism, which is required for growth and development of the mesencephalic dopamine system. In the present study, the spatial and temporal expression patterns of Adh1, Adh3, Adh4, and Aldh1 mRNAs in embryonic C57BL/6 mice (E9.5-E19.5) and Sprague-Dawley rats (E12.5-P0) have been investigated by using radioactive oligonucleotide in situ hybridization. High expression of Aldh1 mRNA was found in the developing mesencephalic dopamine neurons of both mice and rats. Expression of Adh1 and Adh4 mRNAs was observed in adrenal cortex and olfactory epithelium in mice. Additionally, Adh1 was expressed in epidermis, liver, conjunctival, and intestinal epithelium. In rat embryos, expression was less extensive, with Adh1 mRNA being found in liver and intestines. Adh3 expression was ubiquitous in both mouse and rat embryos, suggesting a housekeeping function of the gene. Consistent with previous studies in adult rats and mice, our data suggest that Adh3 is the only ADH class present in rodent brain. Adh and Aldh gene activity in mouse and rat embryos indicate the possible involvement of the respective enzymes in retinoid metabolism and participation in defense against toxic insults, including those that may be involved in the pathogenesis of PD. This work was supported by grants from the Swedish Research Council, the Swedish Parkinson Foundation, the Swedish Brain Foundation, Karolinska Institutet funds, AstraZeneca, and the US Public Health Service.  相似文献   

10.
Nanog expression in mouse germ cell development   总被引:12,自引:0,他引:12  
  相似文献   

11.
12.
13.
14.
15.
Three cold shock domain (CSD) family members (YB-1, MSY2, and MSY4) exist in vertebrate species ranging from frogs to humans. YB-1 is expressed throughout embryogenesis and is ubiquitously expressed in adult animals; it protects cells from senescence during periods of proliferative stress. YB-1-deficient embryos die unexpectedly late in embryogenesis (embryonic day 18.5 [E18.5] to postnatal day 1) with a runting phenotype. We have now determined that MSY4, but not MSY2, is also expressed during embryogenesis; its abundance declines substantially from E9.5 to E17.5 and is undetectable on postnatal day 1(adult mice express MSY4 in testes only). Whole-mount analysis revealed similar patterns of YB-1 and MSY4 RNA expression in E11.5 embryos. To determine whether MSY4 delays the death of YB-1-deficient embryos, we created and analyzed MSY4-deficient mice and then generated YB-1 and MSY4 double-knockout embryos. MSY4 is dispensable for normal development and survival, but the testes of adult mice have excessive spermatocyte apoptosis and seminiferous tubule degeneration. Embryos doubly deficient for YB-1 and MSY4 are severely runted and die much earlier (E8.5 to E11.5) than YB-1-deficient embryos, suggesting that MSY4 indeed shares critical cellular functions with YB-1 in the embryonic tissues where they are coexpressed.  相似文献   

16.
17.
Selenoprotein P (Sepp) is an extracellular glycoprotein which functions principally as a selenium (Se) transporter and antioxidant. In order to assess the spatiotemporal expression of the Sepp gene during mouse embryogenesis, quantitative RT-PCR and in situ hybridization analyses were conducted in embryos and extraembryonic tissues, including placenta. Sepp mRNA expression was detected in all embryos and extraembryonic tissues on embryonic days (E) 7.5 to 18.5. Sepp mRNA levels were high in extraembryonic tissues, as compared to embryos, on E 7.5-13.5. However, the levels were higher in embryos than in extraembryonic tissues on E 14.5-15.5, but were similar in both tissues during the subsequent periods prior to birth. According to the results of in situ hybridization, Sepp mRNA was expressed principally in the ectoplacental cone and neural ectoderm, including the neural tubes and neural folds. In whole embryos, Sepp mRNA was expressed abundantly in nervous tissues on E 9.5-12.5. Sepp mRNA was also expressed in forelimb and hindlimb buds on E 10.5-12.5. In the sectioned embryos, on E 13.5-18.5, Sepp mRNA was expressed persistently in the developing limbs, gastrointestinal tract, nervous tissue, lung, kidney and liver. On E 16.5-18.5, Sepp mRNA expression in the submandibular gland, whisker follicles, pancreas, urinary bladder and skin was apparent. In particular, Sepp mRNA was detected abundantly in blood cells during all the observed developmental periods. These results show that Sepp may function as a transporter of selenium, as well as an antioxidant, during embryogenesis.  相似文献   

18.
The lipolysis stimulated receptor (LSR) recognizes apolipoprotein B/E-containing lipoproteins in the presence of free fatty acids, and is thought to be involved in the clearance of triglyceride-rich lipoproteins (TRL). The distribution of LSR in mice was studied by Northern blots, quantitative PCR and immunofluorescence. In the adult, LSR mRNA was detectable in all tissues tested except muscle and heart, and was abundant in liver, lung, intestine, kidney, ovaries and testes. During embryogenesis, LSR mRNA was detectable at 7.5 days post-coitum (E7) and increased up to E17 in parallel to prothrombin, a liver marker. In adult liver, immunofluorescence experiments showed a staining at the periphery of hepatocytes as well as in fetal liver at E12 and E15. These results are in agreement with the assumption that LSR is a plasma membrane receptor involved in the clearance of lipoproteins by liver, and suggest a possible role in steroidogenic organs, lung, intestine and kidney). To explore the role of LSR in vivo, the LSR gene was inactivated in 129/Ola ES cells by removing a gene segment containing exons 2-5, and 129/Ola-C57BL/6 mice bearing the deletion were produced. Although heterozygotes appeared normal, LSR homozygotes were not viable, with the exception of three males, while the total progeny of genotyped wild-type and heterozygote pups was 345. Mortality of the homozygote embryos was observed between days 12.5 and 15.5 of gestation, a time at which their liver was much smaller than that of their littermates, indicating that the expression of LSR is critical for liver and embryonic development.  相似文献   

19.
The low density lipoprotein receptor-related protein 4 gene (Lrp4) was identified by subtractive screening of cDNAs of the migratory primordial germ cells (PGCs) of E8.5-9.5 embryo and E3.5 blastocysts. Lrp4 is expressed in PGCs in the hindgut and the dorsal mesentery of E9.5 embryos, and in germ cells in the genital ridges of male and female E10.5-13.5 embryos. Lrp4 is also expressed in spermatogonia of the neonatal and adult testes and in the immature oocytes and follicular cells of the adult ovary. The absence of Lrp4 expression in the blastocyst, embryonic stem cells and embryonic germ cells suggests the Lrp4 is a molecular marker that distinguishes the germ cells from embryo-derived pluripotent stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号