首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number of oocytes are contained in the mammalian ovary. A very small number of these oocytes grow to the final size, mature, and are ovulated. In the ovary there are more early antral follicles than late antral or preovulatory follicles, offering a large pool of oocytes for IVM and IVF if appropriate culture conditions could be devised. In the present study, early antral follicles containing oocytes 90 to 99 microm in diameter were isolated from bovine ovaries. Cumulus-oocyte complexes (COC) with pieces of parietal granulosa (COCG) were then dissected from the follicles. The COCGs were embedded in collagen gels and cultured in Medium 199 with 10% fetal calf serum (FCS) for 8 d. In Experiment 1, the effect of hypoxanthine and FSH on the growth of bovine oocytes was examined. When hypoxanthine (2 and 4 mM) and FSH (10 ng/ml) were added to the culture medium, the number of granulosa cell-enclosed oocytes increased significantly (P < 0.05). All of the oocytes surrounded by granulosa cells showed a normal morphology and were at the germinal vesicle stage, while 75 to 94% of the denuded oocytes were degenerated and had resumed meiosis. The mean diameter of the oocytes showing normal morphology was significantly higher than that measured before culture (P < 0.05). In Experiment 2, the maturational competence of in vitro-grown bovine oocytes was examined. Oocytes which were 90 to 99 microm in diameter before culture did not have meiotic competence. After being in a growth culture of 4 mM hypoxanthine- and 10 ng/ml FSH-supplemented medium for 7 or 11 d, granulosa cell-enclosed oocytes were recovered from the COCGs. No significant difference (P < 0.05) in the diameters of the oocytes was observed between 7 and 11 d of culture (7 d: 107.5 +/- 6.1 microm, n = 30; 11 d: 108.0 +/- 5.3 microm, n = 35). After a subsequent 24 h in a maturation free of hypoxanthine and FSH medium, only 17% of the oocytes cultured for 7 d underwent germinal vesicle breakdown. On the other hand, 89% of the oocytes cultured for 11 d underwent germinal vesicle breakdown, and 11% of the oocytes emitted the first polar body and reached metaphase II. These results demonstrate for the first time that bovine oocytes harvested from early antral follicles can grow, and acquire meiotic competence in vitro.  相似文献   

2.
3.
In this study we evaluated whether mouse oocytes derived from early antral or preovulatory follicles could affect the ability of preantral granulosa cells to sustain oocyte growth in vitro. We found that early antral oocytes with a diameter > or =75 microm did not grow any further during 3 days of culture on preantral granulosa cell monolayers in vitro, while most of the oocytes with a smaller diameter increased significantly in size. Similarly, about 65% of growing oocytes isolated from preantral follicles grew when cultured on preantral granulosa cells. By coculturing with growing oocytes fully grown early antral or preovulatory oocytes, a small proportion (about 10%) of growing oocytes increased in diameter, and changes in granulosa cell morphology were observed. Such effects occurred as a function of the fully grown oocyte number seeded and were not associated with a decrease in coupling index values. By avoiding physical contact between antral oocytes and granulosa cells, the proportion of growing oocytes undergoing a significant increase in diameter was about 36%. These results indicate that fully grown mouse oocytes can control preantral granulosa cell growth-promoting activity through the production of a soluble factor(s) and the maintenance of functional communications with surrounding granulosa cells.  相似文献   

4.
Isolated primary follicles from 10-day-old mice were cultured in a collagen gel matrix for 6 days in Minimum Essential Medium + foetal calf serum, followed by culture in unsupplemented medium (control) or in medium containing hypoxanthine (2 mM) or dibutyryl cyclic adenosine monophosphate (dbcAMP, 0.25 mM) for a further 3 or 6 days. Less than 10% of oocytes resumed meiosis during the culture period in all groups. At recovery, the diameter of oocytes at the germinal vesicle stage was recorded and their ability to resume meiosis was determined. Hypoxanthine had little effect on oocyte growth and meiotic competence, but culture in dbcAMP resulted in oocytes that were larger (60.2 +/- 0.6 microns) than those of controls (55.8 +/- 0.5 microns) and more competent to resume meiosis than were controls (42.9% and 10.8%, respectively). The addition of dbcAMP to the culture medium induced a 4-5-fold increase in the number of granulosa cells oocyte compared with controls (3757 +/- 423 and 838 +/- 93, respectively). These results indicate that increased oocyte growth and meiotic competence is primarily mediated via dbcAMP effects on the granulosa cells.  相似文献   

5.
Achieving full in vitro growth of oocytes of both domestic animals and humans remains a major challenge. The objective of this study was to examine the in vitro development of primary follicles isolated enzymatically from cryopreserved sheep ovarian tissue. In Experiment 1, isolated primary follicles (mean diameter 60.1+/-0.78microm) were cultured in serum-free medium on fibronectin-coated wells for 42 days. Initially follicular structure was lost as granulosa cells plated down, but by Day 7 two distinct morphologies began to emerge. Nineteen out of 36 oocytes were gradually re-surrounded by granulosa cells, forming follicle-like units (reorganized follicles), and the remaining 17 were not (non-reorganized follicles). On Day 2, there was no difference in diameter of oocytes between reorganized and non-reorganized follicles. The diameter (mean+/-S.E.M.) of oocytes of reorganized follicles increased (P<0.05) from 47.1+/-2.2microm to 65.3+/-2.6microm between Day 2 and Day 42, respectively, but that of oocytes of non-reorganized follicles showed no change. In Experiment 2, oocyte growth and granulosa cell differentiation during long-term culture of primary follicles (>42 days) were examined. Oocytes of reorganized follicles reached a maximum diameter of 75.4+/-2.0microm, a size equivalent to that of oocytes of ovine secondary follicles. Using RT-PCR, mRNA for follicle stimulating hormone receptor was detected in granulosa cells of freshly isolated secondary follicles and of long-term cultured reorganized follicles, but not of non-reorganized follicles. In Experiment 3, we tested if the culture conditions could support further oocyte growth in secondary follicles. The oocytes from enzymatically isolated secondary follicles increased in diameter from 77.7+/-1.6microm to 98.8+/-2.1microm (P<0.05) during 28 days in culture. The changes in oocyte size and in gene expression by granulosa cells support the conclusion that isolated ovine primary follicles developed in vitro to reach the secondary follicle stage.  相似文献   

6.
7.
Cumulus oocyte complexes (COCs) and cumulus oocyte complexes connected to a piece of the membrane granulosa (COCGs) were isolated from bovine antral follicles with a diameter of 2 to 8 mm. After culture of COCGs without gonadotrophic hormones for 22 hr approximately 50% of the oocytes were still in the germinal vesicle (GV) stage Histology of the COCGs showed that the pieces of the membrana granulosa were free of thecal cells and parts of the basal membrane. This indicates that the membrana granulosa solely inhibits the progression of meiosis. To investigate the effect of gonadotropins on the resumption of meiosis of oocytes from small and medium sized antral follicles, COCs and COCGs were cultured with or without rec-hFSH or hCG. Addition of 0.05 IU rec-hFSH to the culture medium of COCGs resulted in germinal vesicle breakdown in 97.8% of the oocytes compared to 46% in the control group, and an increase of the diameter of the COCs (479 μm vs. 240 μm in the control group). Addition of 0.05 IU hCG to the culture medium had no effect on nuclear maturation (47.2% GV vs. 48.5% GV in the control group nor on cumulus expansion (246 μm vs. 240 μm in the control group). RT-PCR on cDNA of the follicular wall, cumulus cells, granulosa cells, COCs, and oocytes revealed that mRNA for FSH receptor was present in all cell types except oocytes. mRNA of the LH receptor was detected exclusively in thecal cells. Nucleotide sequence analysis and alignment of the cloned PCR products showed the presence of two isoforms of the FSH receptor mRNA and two isoforms of the LH receptor mRNA. It is concluded that, in vitro, resumption of meiosis of oocytes, originating from small and medium sized antral follicles and meiotically arrested by the membrana granulosa, is triggered by FSH and not by LH. This is supported by the fact that receptors for FSH, but not for LH, are transcribed in the cumulus and granulosa cells of these follicles. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Cortical tissues containing only primordial and primary follicles, or secondary follicles 140-190 microm in diameter, were collected from bovine ovaries and xenografted under the kidney capsules of female severe combined immunodeficient (SCID) mice. Histological examination revealed that all grafts were well vascularised and contained surviving follicles at 4 or 6 weeks after grafting. Primordial and primary follicles survived but did not develop beyond the one-layer stage. Secondary follicles, on the other hand, had formed antra at 4 weeks after grafting. The mean diameter of secondary follicles, which was 165.2 +/- 17.0 microm (n = 42) before grafting, had developed to 442.9 +/- 77.9 microm (n = 37) and 592.9 +/- 116.0 microm (n = 45) in diameter at 4 and 6 weeks after grafting, respectively. The mean diameter of oocytes, which was 55.1 +/- 4.9 microm (n = 42) before grafting, also increased significantly (4 weeks: 105.6 +/- 6.3 microm; 6 weeks: 122.2 +/- 2.6 microm; p < 0.05). Oocytes were recovered from follicles that had developed to more than 400 microm in diameter after 6 weeks, and were subjected to subsequent mature culture. Of these oocytes, 34% (11/32) resumed meiosis and 6% (2/32) matured to the second metaphase. Follicular fluid in bovine antral follicles developed in SCID mice had the 69 kDa protein, which was detected by anti-mouse albumin antibody but not by anti-bovine albumin antibody in immunoblotting analysis. These results demonstrated that bovine secondary follicles develop to the antral stage in SCID mice, and that the oocytes in the follicles acquire the meiotic competence.  相似文献   

9.
The development of follicles in the mammalian ovary involves a bidirectional communication system between the follicular cells and oocyte that is now beginning to be characterized. Little is known about the mechanisms underlying the beginning of the oocyte growth and the acquisition of the competence to resume meiosis by the growing oocyte. In the present study, we devised a multistep culture system for mouse oocytes obtained from 15.5- to 16.5-days postcoitum embryos (mean diameter +/- SEM, 9.7 +/- 1.3 microm), allowing three stages of the oocyte growth to be identified: (i) an early stage in which the oocyte growth is induced by direct stimulation of a soluble growth factor, namely stem cell factor (SCF), independent of the formation of gap junctions with granulosa cells; (ii) a second phase in which the oocyte growth depends on the combined action of SCF and contacts with granulosa cells; and (iii) a third phase of granulosa cell-dependent, SCF-independent growth. At each stage, key events of oocyte development and differentiation, such as the c-kit reexpression, the early zona pellucida assembly, and the beginning of follicologenesis, were observed to occur independently by the presence of SCF. At the end of the in vitro growing phases, lasting 18-20 days, oocytes reached a size (50 +/- 2.5 microm) and a chromatin differentiation (stage I-II) equivalent to those of 9- to 10-day-old preantral oocytes and were unable to complete the growth phase. About 50% of the in vitro-grown oocytes were induced to resume meiosis by okadaic acid (OA) treatment. However, a significant fraction of them (48%) showed inability to maintain the chromosome condensation in M-phase. When in vitro-grown oocytes were treated with UO126, a specific MEK inhibitor that prevents activation of mitogen-activated protein kinases (ERK-1 and ERK-2), for 1 h before, during, and following OA treatment, only 22% of oocytes underwent germinal vesicle breakdown after 24 h from the OA treatment. These studies demonstrate that SCF alone can induce the onset of the oocyte growth. This is, however, not sufficient to fully activate the mechanisms governing the acquisition of the meiotic competence previously described as a 15-day oocyte-autonomous clock starting at the onset of growth. The inability of oocytes to progress into the last stages of growth and the lack of synchrony between nuclear and cytoplasm maturation showed by a subset of them resemble the characteristics of oocytes from connexin-37- and -43-deficient mice and indicate the preantral/antral transition point as a critical stage of oocyte development requiring the coordinated differentiation of the oocyte with granulosa cells and the maintenance of adequate communication between these two cell types to assure the correct oocyte meiotic maturation.  相似文献   

10.
Bovine oocytes (90 to 99 microns in diameter) were isolated from early antral follicles (0.5 to 0.7 mm in diameter). Cumulus-oocyte complexes (COC) with pieces of parietal granulosa were embedded in collagen gels and cultured for 14 d. After in vitro growth culture, oocytes recovered from the collagen gels were further matured, fertilized and cultured in vitro, and then were transferred to recipient cows. After 14 d of growth culture, 37% of the oocytes (203/556) showed normal morphology in the collagen gels. The mean diameter of the oocytes was 110.1 +/- 6.0 microns, significantly larger (P < 0.01) than before growth culture (94.8 +/- 2.7 microns), and 77% were at the germinal vesicle stage while 23% had undergone germinal vesicle breakdown. After 24 h of maturation culture followed by insemination, 27% of in vitro-grown oocytes reached the second metaphase, and 42% of the oocytes were normally fertilized. After insemination, 18.2% of in vitro-grown oocytes cleaved and 3.7% developed to the blastocyst stage. Three blastocysts obtained from in vitro-produced 90- to 99-micron oocytes were transferred to 3 recipients. One recipient subsequently became pregnant and delivered a live calf on Day 277. These results demonstrated for the first time that 90 to 99-micron oocytes from early antral follicles can complete growth and acquire full developmental competence in vitro so that live young can be produced after maturation, fertilization, subsequent culture in vitro, and transfer to recipient cows.  相似文献   

11.
Delineation of maternal versus direct effects of heat stress in reducing development at the germinal vesicle (GV) stage is challenging, because oocytes spontaneously resume meiosis after removal from antral follicles. The use of S-roscovitine (inhibitor of p34(cdc2)/cyclin B kinase) to hold bovine oocytes at the GV stage without compromising early embryo development was previously validated in our laboratory. The objective of the present study was to assess the direct effects of an elevated temperature commonly seen in heat-stressed dairy cows on cumulus-oocyte complexes (COCs) held at the GV stage using 50 microM S-roscovitine. During roscovitine culture, GV-stage COCs (antral follicle diameter, 3-8 mm) were cultured at 38.5 or 41 degrees C. Thereafter, oocytes were removed from roscovitine medium and allowed to undergo in vitro maturation, fertilization, and culture. Zona pellucida hardening (solubility to 0.5% pronase), nuclear stage (Hoechst 33342), cortical granule type (lens culinaris agglutinin-fluorescein isothiocyanate [FITC]), and early embryo development were evaluated. Culture of GV-stage COCs at 41 degrees C increased the proportion that had type III cortical granules and reduced the proportion that progressed to metaphase II after in vitro maturation. Effects of 41 degrees C on zona pellucida hardening, fertilization (penetration, sperm per oocyte, pronuclear formation, and monospermic and putative embryos), and cleavage of putative zygotes were not noted. However, culture of GV-stage COCs at 41 degrees C for 6 h decreased the proportion of 8- to 16-cell embryos, whereas 41 degrees C for 12 h reduced blastocyst development. In summary, antral follicle COCs are susceptible to direct effects of elevated body temperature, which may account in part for reduced fertility in heat-stressed cows.  相似文献   

12.
Meiotic maturation of mammalian oocytes is under the control of cell cycle molecules Cdc2 kinase and MAP kinase (mitogen-activated protein kinase). In the present study, we investigated the relationship between the ability to activate Cdc2 kinase and MAP kinase and the acquisition of meiotic competence during pig oocyte growth. Growing and fully grown pig oocytes were collected from four groups of antral follicles of various diameters (A, 0.5-0.7 mm; B, 1.0-1.5 mm; C, 2.0-2.5 mm; D, 4.0-6.0 mm) and cultured in vitro. Fully grown oocytes from class D follicles, which have full competence to mature to metaphase II, had the ability to activate both Cdc2 kinase and MAP kinase. In contrast, growing oocytes from class A follicles, which have limited competence to resume meiosis, had no such ability. Cyclin B1 molecules did accumulate, however, with phosphorylated 35 and 36 kDa bands of p34cdc2 appearing in the cultured oocytes. Of the growing oocytes from class B follicles, 60% resumed meiosis but arrested at metaphase I. Some of the oocytes in this class were capable of activating Cdc2 kinase, although they did not appear to have established a MAP kinase-activating pathway or the ability to activate MEK. These results suggest that limited meiotic competence in growing oocytes from class A follicles is due to their inability to activate Cdc2 kinase and their incomplete MEK-MAP-kinase pathway, although the oocytes are capable of accumulating cyclin B1 molecules. During the final growth phase, pig oocytes acquire the ability to activate Cdc2 kinase and then establish the MEK-MAP-kinase pathway for full meiotic competence.  相似文献   

13.
The ability of mammalian oocytes to resume meiosis and to complete the first meiotic division is acquired sequentially during their growth phase. The acquisition of meiotic competence in goat oocytes has been previously correlated with follicular size (9). Since protein phosphorylation/dephosphorylation play a key role in oocyte maturation, it could be that in meiotically incompetent oocytes, such post-translational modifications are inadequate. The aim of this study was to analyze whether changes in oocyte proteins phosphorylation occurred during the acquisition of meiotic competence. For this propose, goat oocytes were divided into 4 classes according to follicular size and meiotic competence: Class A oocytes from follicles < 0.5 mm in diameter: Class B oocytes from follicles 0.5-0.8 mm; Class C oocytes from follicles 1-1.8 mm and class D oocytes from follicles > 3 mm. The protein phosphorylation patterns of these classes of oocytes were studied at different times of in vitro maturation. After 4h of culture, when all oocytes were in the germinal vesicle stage, only the oocytes from Class D displayed the phosphoproteins at 110 kD, 31 kD and around 63 kD. In contrast to Class D oocytes Classes B and C oocytes were partially competent to mature, they underwent germinal vesicle breakdown later than fully competent Class D oocytes and remained in early prometaphase I or in metaphase I, respectively. They exhibited the phosphoprotein changes that are associated with commitment to resume meiosis; but the changes occurred later than in Class D oocytes, which were fully competent to reach metaphase II. After 27 h of culture, the phosphorylation patterns of Class B, C and D oocytes were identical, whereas the meiotic stages reached were quite different. The phosphoprotein changes associated with oocyte maturation did not occur in meiotically incompetent Class A oocytes, which were blocked at the germinal vesicle stage. From these results it can be concluded that, at the GV stage, meiotically incompetent and competent goat oocytes display different patterns of protein phosphorylation. Once oocytes are able to resume meiosis they undergo specific phosphorylation changes, but whether these changes are markers or regulators of maturation events remains to be determined.  相似文献   

14.
Katska L  Alm H  Ryńska B 《Theriogenology》2000,54(2):247-260
The aim of this experiment was to characterize the growth and nuclear configuration of oocytes isolated from late preantral and early antral bovine ovarian follicles immediately after recovery and after the in vitro culture. Individual follicles were isolated by microdissection from slices of the ovarian cortex. Follicles were sorted by diameter into 175 to 224, 225 to 274 and 275 to 325 microm-size classes. The follicles selected for in vitro culture were placed singly into 40 microL droplets of medium (TCM 199 enriched with FCS, insulin, transferrin, sodium selenite, sodium pyruvate, 1-glutamine, hypoxanthine, FSH and estradiol-17beta) and cultured for 6, 8, 11, 14 or 17 d. The sizes of follicles and oocytes were related to the duration of culture and gradually increased as culture duration was prolonged. The analysis of the relationship between mean diameters of oocytes at the time of recovery and after the in vitro culture, has shown significant differences after culture lasting 8 d (76.9+/-9.9 vs. 86.1+/-11.1 microm; P < 0.05), 11 d (77.0+/-9.9 vs. 91.9+/-17.5 microm; P < 0.01), 14 d (80.0+/-9.5 vs. 97.9+/-16.5 microm; P < 0.01) and 17 d (82.6+/-6.6 vs. 97.2+/-11.5 microm; P< 0.01). No statistical differences were shown among oocytes in the 5 pre-culture groups (79.5+/-8.8; 76.9+/-9.9; 77.1+/-9.9; 80.1+/-9.5 and 82.6+/-6.6 microm). Meiotic arrest was preserved in 71.9% of oocytes in our culture system up to 14 d. Frequency of the germinal vesicle (GV) stage did not significantly differ among oocytes evaluated "fresh" or cultured for 6, 8, 11 or 14 d. No relationship was observed between the size class of follicles and the frequency of the GV-stage. Prolonging the culture period to 17 d drastically decreased the percentage of oocytes in the GV-stage (18.7%) and increased the percentage of oocytes having premature initiation of meiosis (GVBD; 46.3%) and degeneration (25.0%). These results suggest that out of all culture periods used in our experiment, Day 14 was found to be the longest culture time allowing for both oocyte growth and maintenance of nuclear configuration at the GV-stage.  相似文献   

15.
Fully grown rabbit oocytes, isolated from preovulatory follicles, exhibit highly condensed bivalents within an intact germinal vesicle while a very low level of histone H1 kinase activity could be detected in their extracts. Chromatin condensation started in growing oocytes isolated from antral follicles presenting a diameter of 0.5 mm. This event was accompanied by a transient rise in histone H1 kinase activity which culminated in large antral follicles measuring 0.75 to 1 mm in diameter. However, the extent of histone H1 kinase activity observed in these growing oocytes remained far less important than that recorded in extracts prepared from in vitro cultured metaphase I and metaphase II oocytes. Moreover, this activity was insufficient to induce germinal vesicle breakdown which will only occur with an increasing efficiency, following in vitro culture of medium, large, and fully grown antral follicles. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The aim of the present study was to examine the growth and survival in culture, and the subsequent meiotic competence, of bovine oocytes recovered from early antral ovarian follicles. Follicles isolated by microdissection of the ovarian slices were sorted into two size groups: (I) 0.2-0.5 mm diameter; and (II) 0.4-0.7 mm diameter. Group I follicles were cultured intact while in Group II, cumulus-oocyte complexes with pieces of parietal granulosa were dissected from the follicles and cultured. Follicles or cumulus-oocyte complexes with parietal granulose were embedded in collagen gel and cultured in TCM 199 supplemented with 3% BSA and 4 mM hypoxanthine for 14 days (Group I) or 7-10 days (Group II). After this, cumulus-oocyte complexes were recovered from the gel. Oocytes that had lost the majority of the cumulus were fixed immediately after recovery. Cumulus-oocyte complexes showing normal morphology were either fixed immediately or were subjected to IVM for an additional 24h, and then were fixed. At the end of the growth culture, 57.6% of the compact COCs in Group I follicles were preserved in the GV configuration, 16.7% had resumed meiosis, and 25.8% were degenerated or did not show detectable chromatin. After IVM, the proportion of oocytes resuming meiosis increased significantly (from 16.7% versus 42.7%; P < 0.05), and 9.1% of all oocytes had reached TI or MII. The isolated cumulus-oocyte complexes in Group II began creating follicle-like structures following 24 h of growth culture (7.1%). The proportion of these structures reached 50.8% on days 2-3, and then gradually decreased due to degeneration. On day 10 only 5.8% of cumulus-oocyte complexes were classified as intact. Of the cumulus intact oocytes recovered from the newly created follicle-like structures at 7-10 days, 54.7% were in the germinal vesicle stage, 31.0% underwent germinal vesicle breakdown, 14.3% were degenerated or the chromatin configuration was not detectable. After 24 h of IVM, 67.6% of oocytes had resumed meiosis, and 21.6% of all oocytes had reached TI and MII. These results show that isolated early follicles and cumulus-oocyte complexes from intact early antral follicles can grow in culture and can develop meiotic competence.  相似文献   

17.
The role of granulosa cells in the regulation of mouse ovarian oocyte metabolism was investigated. Fully grown antral oocytes, isolated from surrounding cumulus cells, were cultured on monolayers of preantral granulosa cells in the presence of dbcAMP to prevent the resumption of meiosis. Under these conditions metabolic cooperativity was established between the two cell types as early as 1 hr after seeding. Moreover, cocultured oocytes phosphorylated two polypeptides of 74 and 21 kDa which are normally phosphorylated in follicle-enclosed growing oocytes but not in cumulus cell-enclosed fully grown oocytes at the germinal vesicle stage. When cocultured oocytes were allowed to resume meiosis, the 74 and 21 kDa proteins were synthesized but no longer phosphorylated even though intercellular coupling between the two cell types was maintained during radiolabeling. It appears therefore: a) that the different protein kinase activity of growing and fully grown germinal vesicle-stage mouse oocytes is related to the differentiative state of granulosa cells, and b) that the regulation of oocyte protein phosphorylation activity by granulosa cells is dependent on the meiotic stage of the oocyte.  相似文献   

18.
Fully grown competent mouse oocytes spontaneously resume meiosis in vitro when released from their follicular environment, in contrast to growing incompetent oocytes, which remain blocked in prophase I. The cell cycle regulators, maturation promoting factor (MPF; [p34(cdc2)/cyclin B kinase]) and mitogen-activated protein (MAP) kinases (p42(MAPK) and p44(MAPK)), are implicated in meiotic competence acquisition. Incompetent oocytes contain levels of p42(MAPK), p44(MAPK), and cyclin B proteins that are comparable to those in competent oocytes, but their level of p34(cdc2) is markedly lower. Okadaic acid (OA), an inhibitor of phosphatases 1 and 2A, induces meiotic resumption of incompetent oocytes. The kinetics and the percentage of germinal vesicle breakdown depends on whether or not oocytes have been cultured before OA treatment. We show that the fast kinetics and the high percentage of germinal vesicle breakdown induced by OA following 2 days in culture is neither the result of an accumulation of p34(cdc2) protein, nor to the activation of MPF in incompetent oocytes, but rather by the premature activation of MAP kinases. Indeed, a specific inhibitor of MAPK kinase (MEK) activity, PD98059, inhibits activation of MAP kinases and meiotic resumption. Altogether, these results indicate that the MEK-MAPK pathway is implicated in OA-induced meiotic resumption of incompetent mouse oocytes, and that the MEK-MAPK pathway can induce meiotic resumption in the absence of MPF activation.  相似文献   

19.
Some culture systems have been shown to support oocyte growth in mice, although there has been little success in applying these systems to other species. In the present study, we compared three culture conditions for growing bovine oocytes and examined the effect of hypoxanthine on oocyte growth. In the first experiment, early antral follicles, 0.4-0.7 mm in diameter were collected, and oocyte-cumulus-granulosa cell complexes (OCGs) and oocyte-cumulus cell complexes (OCs) were dissected from the follicles. Follicles (Fs), OCGs and OCs were embedded in collagen gels and cultured in serum-supplemented medium for 16 days. In the Fs, OCGs and OCs cultured in hypoxanthine-free medium, 21%, 9% and 4% of the oocytes showed normal morphology, respectively, and hypoxanthine (4 mM) increased the percentages in all the groups (Fs, 37%; OCGs, 29%; OCs, 10%). In the second experiment, Fs were cultured in serum-free medium with or without hypoxanthine for 16 days. Histological examination demonstrated that hypoxanthine maintained the integrity of the follicular basement membrane. After a growth culture, 91% of the oocytes showed normal morphology, and 87% of the oocytes were at the germinal vesicle stage in serum-free, hypoxanthine-supplemented medium. The mean diameters of the oocytes were significantly larger (117.6 +/- 5.7 microm) than they were in the other groups and than they had been before the culture (approximately 95 microm). After a subsequent maturation culture of the oocytes, 85% underwent germinal vesicle breakdown and 23% reached the second metaphase. These results demonstrate that growing bovine oocytes from early antral follicles grow efficiently in follicles cultured in serum-free, hypoxanthine-supplemented medium and acquire meiotic competence.  相似文献   

20.
The p34(cdc2) kinase has been identified as a protein factor that is a regulator of meiotic maturation in mammalian oocytes. To investigate the regulatory function of the meiotic resumption in bovine oocytes cultured in vitro, the changes in the phosphorylation states of p34(cdc2) kinase and the histone H1 kinase activity were examined around germinal vesicle breakdown (GVBD). All bovine oocytes just after isolation from their follicles were arrested at the germinal vesicle (GV) stage, and these extracts exhibited two (upper and lower) bands of p34(cdc2) kinase on SDS-PAGE followed by immunoblotting with an antibody against C-terminal peptide of p34(cdc2). When these oocytes were cultured for 24 h in a medium supplemented with 100 microg/ml genistein, tyrosine phosphorylation inhibitor, GVBD was induced in 85% of oocytes, indicating that the upper band of p34(cdc2) kinase in bovine oocytes at the GV stage was already fully phosphorylated tyrosine residue prior to culture. Another (middle) band of p34(cdc2) kinase between the upper and lower bands appeared in the extracts of the oocytes cultured for 4 h, and significant activation of the histone H1 kinase was found in these oocytes (67 +/- 18 fmol/h/oocyte) as compared to that in oocytes cultured for 0 h (46 +/- 11 fmol/h/oocyte). The staining intensity of the middle band and the activity of the histone H1 kinase were further increased after the initiation of GVBD at 6 h of culture, but the quantitative changes of upper and lower bands were not detected throughout the 12 h of culture. Thus, it is concluded that the dephosphorylation of p34(cdc2) kinase followed by activation of the histone H1 kinase after the onset of culture plays a key role in the resumption of meiosis in bovine oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号