首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Sequences of small subunit (SSU) and large subunit (LSU) ribosomal RNA genes from archaebacteria, eubacteria, and the nucleus, chloroplasts, and mitochondria of eukaryotes have been compared in order to identify the most conservative positions. Aligned sets of these positions for both SSU and LSU rRNA have been used to generate tree diagrams relating the source organisms/organelles. Branching patterns were evaluated using the statistical bootstrapping technique. The resulting SSU and LSU trees are remarkably congruent and show a high degree of similarity with those based on alternative data sets and/or generated by different techniques. In addition to providing insights into the evolution of prokaryotic and eukaryotic (nuclear) lineages, the analysis reported here provides, for the first time, an extensive phylogeny of the mitochondrial lineage.  相似文献   

2.
The ribosomal RNA (rRNA) gene region of the microsporidium Heterosporis anguillarum has been examined. Complete DNA sequence data (4060 bp, GenBank Accession No. AF402839) of the rRNA gene of H. anguillarum are presented for the small subunit gene (SSU rRNA: 1359 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA: 2664 bp). The secondary structures of the H. anguillarum SSU and LSU rRNA genes are constructed and described. This is the first complete sequence of an rRNA gene published for a fish-infecting microsporidian species. In the phylogenetic analysis, the sequences, including partial SSU rRNA, ITS, and partial LSU rRNA sequences of the fish-infecting microsporidia, were aligned and analysed. The taxonomic position of H. anguillarum as suggested by Lom et al. (2000; Dis Aquat Org 43:225-231) is confirmed in this paper.  相似文献   

3.
Phylogenetic relationships among nematodes of the strongylid superfamily Metastrongyloidea were analyzed using partial sequences from the large-subunit ribosomal RNA (LSU rRNA) and small-subunit ribosomal RNA (SSU rRNA) genes. Regions of nuclear ribosomal DNA (rDNA) were amplified by polymerase chain reaction, directly sequenced, aligned, and phylogenies inferred using maximum parsimony. Phylogenetic hypotheses inferred from the SSU rRNA gene supported the monophyly of representative taxa from each of the 7 currently accepted metastrongyloid families. Metastrongyloid taxa formed the sister group to representative trichostrongyloid sequences based on SSU data. Sequences from either the SSU or LSU RNA regions alone provided poor resolution for relationships within the Metastrongyloidea. However, a combined analysis using sequences from all rDNA regions yielded 3 equally parsimonious trees that represented the abursate Filaroididae as polyphyletic, Parafilaroides decorus as the sister species to the monophyletic Pseudaliidae, and a sister group relationship between Oslerus osleri and Metastrongylus salmi. Relationships among 3 members of the Crenosomatidae, and 1 representative of the Skrjabingylidae (Skrjabingylus chitwoodorum) were not resolved by these combined data. However, members of both these groups were consistently resolved as the sister group to the other metastrongyloid families. These relationships are inconsistent with traditional classifications of the Metastrongyloidea and existing hypotheses for their evolution.  相似文献   

4.
Many prokaryotes have multiple ribosomal RNA operons. Generally, sequence differences between small subunit (SSU) rRNA genes are minor (<1%) and cause little concern for phylogenetic inference or environmental diversity studies. For Halobacteriales, an order of extremely halophilic, aerobic Archaea, within-genome SSU rRNA sequence divergence can exceed 5%, rendering phylogenetic assignment problematic. The RNA polymerase B' subunit gene (rpoB') is a single-copy conserved gene that may be an appropriate alternative phylogenetic marker for Halobacteriales. We sequenced a fragment of the rpoB' gene from 21 species, encompassing 15 genera of Halobacteriales. To examine the utility of rpoB' as a phylogenetic marker in Halobacteriales, we investigated three properties of rpoB' trees: the variation in resolution between trees inferred from the rpoB' DNA and RpoB' protein alignment, the degree of mutational saturation between taxa, and congruence with the SSU rRNA tree. The rpoB' DNA and protein trees were for the most part congruent and consistently recovered two well-supported monophyletic groups, the clade I and clade II haloarchaea, within a collection of less well resolved Halobacteriales lineages. A comparison of observed versus inferred numbers of substitution revealed mutational saturation in the rpoB' DNA data set, particularly between more distant species. Thus, the RpoB' protein sequence may be more reliable than the rpoB' DNA sequence for inferring Halobacteriales phylogeny. AU tests of tree selection indicated the trees inferred from rpoB' DNA and protein alignments were significantly incongruent with the SSU rRNA tree. We discuss possible explanations for this incongruence, including tree reconstruction artifact, differential paralog sampling, and lateral gene transfer. This is the first study of Halobacteriales evolution based on a marker other than the SSU rRNA gene. In addition, we present a valuable phylogenetic framework encompassing a broad diversity of Halobacteriales, in which novel sequences can be inserted for evolutionary, ecological, or taxonomic investigations.  相似文献   

5.
Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences   总被引:2,自引:0,他引:2  
We analyzed the large subunit ribosomal RNA (rRNA) gene [LSU ribosomal DNA (rDNA)] as a phylogenetic marker for arbuscular mycorrhizal (AM) fungal taxonomy. Partial LSU rDNA sequences were obtained from ten AM fungal isolates, comprising seven species, with two new primers designed for Glomeromycota LSU rDNA. The sequences, together with 58 sequences available from the databases, represented 31 AM fungal species. Neighbor joining and parsimony analyses were performed with the aim of evaluating the potential of the LSU rDNA for phylogenetic resolution. The resulting trees indicated that Archaeosporaceae are a basal group in Glomeromycota, Acaulosporaceae and Gigasporaceae belong to the same clade, while Glomeraceae are polyphyletic. The results support data obtained with the small subunit (SSU) rRNA gene, demonstrating that the LSU rRNA gene is a useful molecular marker for clarifying taxonomic and phylogenetic relationships in Glomeromycota.  相似文献   

6.
The wide but sporadic distribution of group I introns in protists, plants, and fungi, as well as in eubacteria, likely resulted from extensive lateral transfer followed by differential loss. The extent of horizontal transfer of group I introns can potentially be determined by examining closely related species or genera. We used a phylogenetic approach with a large data set (including 62 novel large subunit [LSU] rRNA group I introns) to study intron movement within the monophyletic lichen family Physciaceae. Our results show five cases of horizontal transfer into homologous sites between species but do not support transposition into ectopic sites. This is in contrast to previous work with Physciaceae small subunit (SSU) rDNA group I introns where strong support was found for multiple ectopic transpositions. This difference in the apparent number of ectopic intron movements between SSU and LSU rDNA genes may in part be explained by a larger number of positions in the SSU rRNA, which can support the insertion and/or retention of group I introns. In contrast, we suggest that the LSU rRNA may have fewer acceptable positions and therefore intron spread is limited in this gene. Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

7.
Taxonomic resolution of the Nosema/Vairimorpha clade has been augmented with DNA sequences of the small subunit (SSU) and large subunit (LSU) ribosomal RNA (rRNA) and the arrangement of SSU and LSU. Based on the two characteristics, the clade is largely divided into two, i.e. ‘true’ Nosema sub-group and non-‘true’ Nosema sub-group within the clade. Our study shows that a novel Nosema species isolated from Pieris rapae has mixed characteristics of the ‘true’ and non-‘true’ Nosema sub-group based on the topology of SSU and LSU sequences. To our knowledge, this may be the first case of the incongruent phylogenetic placement of SSU and LSU in the Nosema/Vairimorpha clade. Additionally, the length of internal transcribed spacer (ITS) can be a diagnostic tool to distinguish ‘true’ Nosema from non-’true’ Nosema in the Nosema/Vairimorpha clade based on its nucleotide length as reported before.  相似文献   

8.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

9.
The substitution rate of the individual positions in an alignment of 750 eukaryotic small ribosomal subunit RNA sequences was estimated. From the resulting rate distribution, an equation was derived that gives a more precise relationship between sequence dissimilarity and evolutionary distance than hitherto available. Trees constructed on the basis of evolutionary distances computed by this new equation for small ribosomal subunit RNA sequences from ciliates, apicomplexans, dinoflagellates, oomycetes, hyphochytriomycetes, bicosoecids, labyrinthuloids, and heterokont algae show a more consistent tree topology than trees constructed in the absence of substitution rate calibration. In particular, they do not suffer from anomalies caused by the presence of extremely long branches.  相似文献   

10.
The nearly complete nuclear large subunit ribosomal RNA (LSU rRNA) gene in corals was amplified by primers designed from polymerase chain reaction (PCR) strategies. The motif of the putative 3′-terminus of the LSU rRNA gene was sequenced and identified from intergenic spacer (IGS) clones obtained by PCR using universal primers designed for corals. The 3′-end primer was constructed in tandem with the universal 5′-end primer for the LSU rRNA gene. PCR fragments of 3500 bp were amplified for octocorals and non-Acropora scleractinian corals. More than 80% of the Acropora LSU rRNA gene (3000 bp) was successfully amplified by modification of the 5′-end of the IGS primer. Analysis of the 5′-end of LSU rDNA sequences, including the D1 and D2 divergent domains, indicates that the evolutionary rate of the LSU rDNA differs among these taxonomic groups of corals. The genus Acropora showed the highest divergence pattern in the LSU rRNA gene, and the presence of a long branch of the Acropora clade from the other scleractinian corals in the phylogenetic tree indicates that the evolutionary rate of Acropora LSU rDNA might have accelerated after divergence from the common ancestor of scleractinian corals. Received February 17, 2000; accepted June 12, 2000.  相似文献   

11.
Two achlorophyllous microalgal strains were isolated from the soil and white moldy colony collected inside the stone chamber of the Takamatsuzuka Tumulus in Japan. Phylogenetic analyses of the small subunit ribosomal RNA (SSU rRNA) and Dl/D2 large subunit ribosomal RNA (LSU rRNA) gene sequences, and concatenated gene sequences of the SSU and D1/D2 LSU rRNA genes indicated that our two isolates were the members of the non-photosynthetic, yeast-like microalgal Chlorellaceous genus Prototheca (Chlorellales, Trebouxiophyceae, Chlorophyta) but well distinguished from known species. Based on phenotypic and genotypic characteristics, isolates T6713-13-10T and T61213-7-11 are proposed to represent a novel species in Prototheca, P. tumulicola, with the type strain JCM 31123T (isolate T6713-13-10T).  相似文献   

12.
The genus Euduboscquella is one of a few described genera within the syndinean dinoflagellates, an enigmatic lineage with abundant diversity in marine environmental clone libraries based on small subunit (SSU) rRNA. The region composed of the SSU through to the partial large subunit (LSU) rRNA was determined from 40 individual tintinnid ciliate loricae infected with Euduboscquella sampled from eight surface water sites in the Northern Hemisphere, producing seven distinct SSU sequences. The corresponding host SSU rRNA region was also amplified from eight host species. The SSU tree of Euduboscquella and syndinean group I sequences from environmental clones had seven well-supported clades and one poorly supported clade across data sets from 57 to 692 total sequences. The genus Euduboscquella consistently formed a supported monophyletic clade within a single subclade of group I sequences. For most parasites with identical SSU sequences, the more variable internal transcribed spacer (ITS) to LSU rRNA regions were polymorphic at 3 to 10 sites. However, in E. cachoni there was variation between ITS to LSU copies at up to 20 sites within an individual, while in a parasite of Tintinnopsis spp., variation between different individuals ranged up to 19 polymorphic sites. However, applying the compensatory base change model to the ITS2 sequences suggested no compensatory changes within or between individuals with the same SSU sequence, while one to four compensatory changes between individuals with similar but not identical SSU sequences were found. Comparisons between host and parasite phylogenies do not suggest a simple pattern of host or parasite specificity.  相似文献   

13.
Abstract: The nuclear LSU rRNA gene was examined in order to evaluate the current phylogeny of ascomycetes, which is mainly based on nuclear SSU rRNA data. Partial LSU rRNA gene sequences of 19 ascomycetes were determined and aligned with the corresponding sequences of 13 other ascomycetes retrieved from Genbank, including all classes traditionally distinguished and most of the recently accepted classes. The classification based on SSU rDNA data and morphological characters is supported, while the traditional classification and classifications based on the ascus type are rejected. Ascomycetes with perithecia and cleistothecia form monophyletic groups, while the discomycetes are a paraphyletic assemblage. The Pezizales are basal to all other filamentous ascomycetes. The monophyly of Loculoascomycetes is uncertain. The results of the LSU rDNA analysis agree with those of the SSU rDNA and RPB2 gene analyses, suggesting that most classes circumscribed in the filamentous ascomycetes are monophyletic. The branching order and relationships among these classes, however, cannot be elucidated with any of these data sets.  相似文献   

14.
ABSTRACT. Nosema isolates from five lepidopteran forest defoliators, Nosema fumiferanae from spruce budworm, Choristoneura fumiferana ; a Nosema sp. from jack pine budworm, Choristoneura pinus pinus and western spruce budworm, Choristoneura occidentalis ( Nosema sp. CPP and Nosema sp. CO, respectively); Nosema thomsoni from large aspen tortrix, Choristoneura conflictana ; and Nosema disstriae , from the forest tent caterpillar, Malacosoma disstria were compared based on their small subunit (SSU) ribosomal RNA (rRNA) gene sequences. Four of the species sequenced, N. fumiferanae , Nosema sp. CPP, Nosema sp. CO, and N . disstriae have a high SSU rDNA sequence identity (0.6%–1.5%) and are members of the "true Nosema " clade. They all showed the reverse arrangement of the (large subunit [LSU]–internal transcribed spacer [ITS]–SSU) of the rRNA gene. The fifth species, N. thomsoni has the usual (SSU–ITS–LSU) arrangement and is not a member of this clade showing only an 82% sequence similarity. We speculate, therefore, that a genetic reversal may have occurred in the common ancestor to the "true Nosema " clade. Although, the mechanism for rearrangement of the rRNA gene subunits is not known we provide a possible explanation for the localization. N. fumiferanae , Nosema sp. CPP, and Nosema sp. CO clustered together on the inferred phylogenetic tree. The high sequence similarities, the reverse arrangement in the rRNA gene subunits, and the phylogenetic clustering suggest that these three species are closely related but separate species.  相似文献   

15.
Summary A tree was constructed from a structurally conserved area in an alignment of 83 small ribosomal subunit sequences of eukaryotic, archaebacterial, eubacterial, plastidial, and mitochondrial origin. The algorithm involved computation and optimization of a dissimilarity matrix. According to the tree, only plant mitochondria belong to the eubacterial primary kingdom, whereas animal, fungal, algal, and ciliate mitochondria branch off from an internal node situated between the three primary kingdoms. This result is at variance with a parsimony tree of similar size published by Cedergren et al. (J Mol Evol 2898–112, 1988), which postulates the mitochondria to be monophyletic and to belong to the eubacterial primary kingdom. The discrepancy does not follow from the use of conflicting sequence alignments, hence it must be due to the use of different treeing algorithms. We tested our algorithm on a set of sequences resulting from a simulated evolution and found it capable of faith-fully reconstructing a branching topology that involved very unequal evolutionary rates. The use of more limited or more extended areas of the complete sequence alignment, comprising only very conserved or also more variable portions of the small ribosomal subunit structure, does have some influence on the tree topology. In all cases, however, the nonplant mitochondria seem to branch off before the emergence of eubacteria, and the differences are limited to the branching pattern among different types of mitochondria.  相似文献   

16.
Sequence data are presented for approximately 85% of the nuclear large subunit (LSU) rDNA gene for one member of the Bangiophyceae and 47 members of the Florideophyceae, the latter representing all but one of the currently recognized florideophyte orders. Distance, parsimony, and maximum likelihood analyses of these data were used to generate phylogenetic trees, and bootstrap resampling was implemented to infer robustness for distance and parsimony results. LSU phylogenies were congruent with published nuclear small subunit (SSU) rDNA results in that four higher level florideophyte lineages were resolved: lineage 1, containing the order Hildenbrandiales; lineage 2, recovered only under distance analysis, composed of the orders Acrochaetiales, Balliales, Batrachospermales, Corallinales, Nemaliales, Palmariales, and Rhodogorgonales; lineage 3, containing the Ahnfeltiales; and lineage 4, composed of the orders Bonnemaisoniales, Ceramiales, Gelidiales, Gigartinales, Gracilariales, Halymeniales, Plocamiales, and Rhodymeniales. Analyses were also performed on a combined LSU–SSU data set and an SSU-only data set to account for differences in taxon sampling relative to published studies using this latter gene. Combined LSU–SSU analyses resulted in phylogenetic trees of similar topology and support to those obtained from LSU-only analyses. Phylogenetic trees produced from SSU-only analyses differed somewhat in particulars of branching within lineages 2 and 4 but overall were congruent with the LSU-only and combined LSU–SSU results. We close with a discussion of the phylogenetic potential that the LSU has displayed thus far for resolving relationships within the Florideophyceae.  相似文献   

17.
We describe the construction of polymerase chain reaction primers designed to amplify a portion of the mitochondrial (mt) small subunit ribosomal (SSU) RNA-encoding genes in scleractinian corals. Combinations of cloning and sequencing show that the amplified fragments are between 694 and 896 bp in length. Alignment of the amplified DNA sequences to the published mt SSU rRNA genes of Metridium senile and Sarcophyton glaucum indicates several conserved regions among actiniarian, corallimorpharian, octocorallian, and scleractinians, suggesting this primer set can successfully amplify over 80% of the mt SSU rDNA region of scleractinian corals. Surveys of sequence variation and estimation of the rate of evolution show an extremely slow divergence of the SSU rRNA gene in the family Acroporidae. Received June 11, 1999; accepted October 4, 1999.  相似文献   

18.
Primer sequences are described for amplifying and sequencing a large fragment (approximately 2500 b.p.) of the nuclear-encoded large-subunit ribosomal RNA gene (LSU) from red algae. In comparison to RuBisCo large-subunit gene (rbcL) and nuclear-encoded small-subunit ribosomal RNA gene (SSU) sequence data, LSU sequence data was intermediate in the number of phylogenetically informative positions and sequence divergence. Parsimony analysis of LSU sequences for 16 Gelidiales species resolved some nodes unresolved in rbcL and SSU parsimony trees. An analysis of LSU sequences from 13 species of red algae classified in 11 orders suggests that this gene may be useful in studies of higher-level relationships of red algae.  相似文献   

19.
Molecular data and the evolutionary history of dinoflagellates   总被引:10,自引:3,他引:7  
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed.  相似文献   

20.
Characterisation of microsporidian species and differentiation among genetic variants of the same species has typically relied on ribosomal RNA (rRNA) gene sequences. We characterised the entire rRNA gene of a microsporidium from 11 isolates representing eight different European bumblebee (Bombus) species. We demonstrate that the microsporidium Nosema bombi infected all hosts that originated from a wide geographic area. A total of 16 variable sites (all single nucleotid polymorphisms (SNPs)) was detected in the small subunit (SSU) rRNA gene and 42 (39 SNPs and 3 indels) in the large subunit (LSU) rRNA sequence. Direct sequencing of PCR-amplified DNA products of the internal transcribed spacer (ITS) region revealed identical sequences in all isolates. In contrast, ITS fragment length determined by PAGE and sequencing of cloned amplicons gave better resolution of sequences and revealed multiple SNPs across isolates and two fragment sizes in each isolate (six short and seven long amplicon variants). Genetic variants were not unique to individual host species. Moreover, two or more sequence variants were obtained from individual bumblebee hosts, suggesting the existence of multiple, variable copies of rRNA in the same microsporidium, and contrary to that expected for a class of multi-gene family under concerted evolution theory. Our data on within-genome rRNA variability call into question the usefulness of rRNA sequences to characterise intraspecific genetic variants in the Microsporidia and other groups of unicellular organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号