首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A general mathematical model of cell invasion is developed and validated with an experimental system. The model incorporates two basic cell functions: non-directed (diffusive) motility and proliferation to a carrying capacity limit. The model is used here to investigate cell proliferation and motility differences along the axis of an invasion wave. Mathematical simulations yield surprising and counterintuitive predictions. In this general scenario, cells at the invasive front are proliferative and migrate into previously unoccupied tissues while those behind the front are essentially nonproliferative and do not directly migrate into unoccupied tissues. These differences are not innate to the cells, but are a function of proximity to uninvaded tissue. Therefore, proliferation at the invading front is the critical mechanism driving apparently directed invasion. An appropriate system to experimentally validate these predictions is the directional invasion and colonization of the gut by vagal neural crest cells that establish the enteric nervous system. An assay using gut organ culture with chick-quail grafting is used for this purpose. The experimental results are entirely concordant with the mathematical predictions. We conclude that proliferation at the wavefront is a key mechanism driving the invasive process. This has important implications not just for the neural crest, but for other invasion systems such as epidermal wound healing, carcinoma invasion and other developmental cell migrations.  相似文献   

2.
Loss of Endothelin-3/Endothelin receptor B (EDNRB) signaling leads to aganglionosis of the distal gut (Hirschsprung's disease), but it is unclear whether it is required primarily for neural crest progenitor maintenance or migration. Ednrb-deficient gut neural crest stem cells (NCSCs) were reduced to 40% of wild-type levels by embryonic day 12.5 (E12.5), but no further depletion of NCSCs was subsequently observed. Undifferentiated NCSCs persisted in the proximal guts of Ednrb-deficient rats throughout fetal and postnatal development but exhibited migration defects after E12.5 that prevented distal gut colonization. EDNRB signaling may be required to modulate the response of neural crest progenitors to migratory cues, such as glial cell line-derived neurotrophic factor (GDNF). This migratory defect could be bypassed by transplanting wild-type NCSCs directly into the aganglionic region of the Ednrb(sl/sl) gut, where they engrafted and formed neurons as efficiently as in the wild-type gut.  相似文献   

3.
Hindbrain (vagal) neural crest cells become relatively uniformly distributed along the embryonic intestine during the rostral to caudal colonization wave which forms the enteric nervous system (ENS). When vagal neural crest cells are labeled before migration in avian embryos by in ovo electroporation, the distribution of labeled neural crest cells in the ENS varies vastly. In some cases, the labeled neural crest cells appear evenly distributed and interspersed with unlabeled neural crest cells along the entire intestine. However, in most specimens, labeled cells occur in relatively discrete patches of varying position, area, and cell number. To determine reasons for these differences, we use a discrete cellular automata (CA) model incorporating the underlying cellular processes of neural crest cell movement and proliferation on a growing domain, representing the elongation of the intestine during development. We use multi-species CA agents corresponding to labeled and unlabeled neural crest cells. The spatial distributions of the CA agents are quantified in terms of an index. This investigation suggests that (i) the percentage of the initial neural crest cell population that is labeled and (ii) the ratio of cell proliferation to motility are the two key parameters producing the extreme differences in spatial distributions observed in avian embryos.  相似文献   

4.
We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell–cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins.  相似文献   

5.
6.
Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors. In vivo and in vitro experiments demonstrate that trunk, not vagal, crest cells avoid cells or cell membranes expressing Slit2, thereby contributing to the differential ability of neural crest populations to invade and innervate the gut. Conversely, exposure to soluble Slit2 significantly increases the distance traversed by trunk neural crest cells. These results suggest that Slit2 can act bifunctionally, both repulsing and stimulating the motility of trunk neural crest cells.  相似文献   

7.
Recently, a suite of cell migration assays were conducted to investigate the migration of neural crest (NC) cells along the gut during the development of the enteric nervous system (ENS). The NC cells colonise the gastro-intestinal tract as a rostro-caudal wave. Local behaviour was shown to be controlled by position relative to the leading edge of the wavefront. The assays involved chick-quail grafting techniques allowing the total invading population to be considered as a two-species system. A two-species continuum model with logistic proliferation and a migration mechanism is developed here to simulate the chick-quail graft experiments and provide a means of looking at the processes occurring within the invasion wave. Five migration mechanisms are considered--linear diffusion, two cases of nonlinear diffusion, chemokinesis and chemotaxis. The model results agree with the experimental observations, regardless of the specific type of migration mechanism. The results show that NC cell invasion is driven by proliferation and cell motility at the leading edge of the wave. Furthermore, logistic proliferation exerts the dominant control on the system. This observation is confirmed by analysing some simplified invasion models. Once the basic experiments were mathematically replicated, the mathematical models were used in turn to make some predictions that were yet to be experimentally tested. This involved conducting a sensitivity analysis of the system by interrupting the proliferation and/or migration ability of the leading edge. Numerical results show that the system is stable against these changes. Of the three experiments suggested, one was carried out and the experimental results were concordant with the theoretical predictions. The outcome of two other suggested experiments are predicted and left for future experimental validation.  相似文献   

8.
During vertebrate embryogenesis, interaction between neural crest cells and the enteric mesenchyme gives rise to the development of the enteric nervous system. In birds, monoclonal antibody HNK-1 is a marker for neural crest cells from the entire rostrocaudal axis. In this study, we aimed to characterize the HNK-1 carrying cells and antigen(s) during the formation of the enteric nervous system in the hindgut. Immunohistological findings showed that HNK-1-positive mesenchymal cells are present in the gut prior to neural crest cell colonization. After neural crest cell colonization this cell type cannot be visualized anymore with the HNK-1 antibody. We characterized the HNK-1 antigens that are present before and after neural crest cell colonization of the hindgut. Immunoblot analysis of plasma membranes from embryonic hindgut revealed a wide array of HNK-1-carrying glycoproteins. We found that two HNK-1 antigens are present in E4 hindgut prior to neural crest cell colonization and that the expression of these antigens disappears after neural crest colonization. These two membrane glycoproteins, G-42 and G-44, have relative molecular masses of 42,000 and 44,000, respectively, and they both have isoelectric points of 5.5 under reducing conditions. We suggest that these HNK-1 antigens and the HNK-1-positive mesenchymal cells have some role in the formation of the enteric nervous system.  相似文献   

9.
The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural crest cells fail to colonise the gut completely, leading to an aganglionosis of the descending colon, which resembles the human Hirschsprung's disease. Moreover, beta1-null enteric neural crest cells form abnormal aggregates in the gut wall, leading to a severe alteration of the ganglia network organisation. Organotypic cultures of gut explants reveal that beta1-null enteric neural crest cells show impaired adhesion on extracellular matrix and enhanced intercellular adhesion properties. They display migration defects in collagen gels and gut tissue environments. We also provide evidence that beta1 integrins are required for the villi innervation in the small intestine. Our findings highlight the crucial roles played by beta1 integrins at various steps of enteric nervous system development.  相似文献   

10.
Mice carrying heterozygous mutations in the Sox10 gene display aganglionosis of the colon and represent a model for human Hirschsprung disease. Here, we show that the closely related Sox8 functions as a modifier gene for Sox10-dependent enteric nervous system defects as it increases both penetrance and severity of the defect in Sox10 heterozygous mice despite having no detectable influence on enteric nervous system development on its own. Sox8 exhibits an expression pattern very similar to Sox10 with occurrence in vagal and enteric neural crest cells and later confinement to enteric glia. Loss of Sox8 alleles in Sox10 heterozygous mice impaired colonization of the gut by enteric neural crest cells already at early times. Whereas proliferation, apoptosis, and neuronal differentiation were normal for enteric neural crest cells in the gut of mutant mice, apoptosis was dramatically increased in vagal neural crest cells outside the gut. The defects in enteric nervous system development of mice with Sox10 and Sox8 mutations are therefore likely caused by a reduction of the pool of undifferentiated vagal neural crest cells. Our study suggests that Sox8 and Sox10 are jointly required for the maintenance of these vagal neural crest stem cells.  相似文献   

11.
The vertebrate neural crest is a population of migratory cells that originates in the dorsal aspect of the embryonic neural tube. These cells undergo an epithelial-to-mesencyhmal transition (EMT), delaminate from the neural tube and migrate extensively to generate an array of differentiated cell types. Elucidating the gene regulatory networks involved in neural crest cell induction, migration and differentiation are thus crucial to understanding vertebrate development. To this end, we have identified Annexin A6 as an important regulator of chick midbrain neural crest cell emigration. Annexin proteins comprise a family of calcium-dependent, membrane-binding molecules that mediate a variety of cellular and physiological processes including cell adhesion, migration and invasion. Our data indicate that Annexin A6 is expressed in the proper spatio-temporal pattern in the chick midbrain to play a potential role in neural crest cell ontogeny. To investigate Annexin A6 function, we have depleted or overexpressed Annexin A6 in the developing midbrain neural crest cell population. Our results show that knock-down or overexpression of Annexin A6 reduces or expands the migratory neural crest cell domain, respectively. Importantly, this phenotype is not due to any change in cell proliferation or cell death but can be correlated with changes in the size of the premigratory neural crest cell population and with markers associated with EMT. Taken together, our data indicate that Annexin A6 plays a pivotal role in modulating the formation of cranial migratory neural crest cells during vertebrate development.  相似文献   

12.
The enteric nervous system (ENS) is derived from neural crest cells that migrate along the gastrointestinal tract to form a network of neurons and glia that are essential for regulating intestinal motility. Despite the number of genes known to play essential roles in ENS development, the molecular etiology of congenital disorders affecting this process remains largely unknown. To determine the role of bone morphogenetic protein (BMP) signaling in ENS development, we first examined the expression of bmp2, bmp4, and bmprII during hindgut development and find these strongly expressed in the ENS. Moreover, functional BMP signaling, demonstrated by the expression of phosphorylated Smad1/5/8, is present in the enteric ganglia. Inhibition of BMP activity by noggin misexpression within the developing gut, both in ovo and in vitro, inhibits normal migration of enteric neural crest cells. BMP inhibition also leads to hypoganglionosis and failure of enteric ganglion formation, with crest cells unable to cluster into aggregates. Abnormalities of migration and ganglion formation are the hallmarks of two human intestinal disorders, Hirschsprung's disease and intestinal neuronal dysplasia. Our results support an essential role for BMP signaling in these aspects of ENS development and provide a basis for further investigation of these proteins in the etiology of neuro-intestinal disorders.  相似文献   

13.
Cofilin/ADF proteins are a ubiquitously expressed family of F-actin depolymerizing factors found in eukaryotic cells including plants. In vitro, cofilin/ADF activity has been shown to be essential for actin driven motility, by accelerating actin filament turnover. Three actin depolymerizing factors (n-cofilin, m-cofilin, ADF) can be found in mouse and human. Here we show that in mouse the non-muscle-specific gene-n-cofilin-is essential for migration of neural crest cells as well as other cell types in the paraxial mesoderm. The main defects observed in n-cofilin mutant embryos are an impaired delamination and migration of neural crest cells, affecting the development of neural crest derived tissues. Neural crest cells lacking n-cofilin do not polarize, and F-actin bundles or fibers are not detectable. In addition, n-cofilin is required for neuronal precursor cell proliferation and scattering. These defects result in a complete lack of neural tube closure in n-cofilin mutant embryos. Although ADF is overexpressed in mutant embryos, this cannot compensate the lack of n-cofilin, suggesting that they might have a different function in embryonic development. Our data suggest that in mammalian development, regulation of the actin cytoskeleton by the F-actin depolymerizing factor n-cofilin is critical for epithelial-mesenchymal type of cell shape changes as well as cell proliferation.  相似文献   

14.
Our previous studies showed an essential role for connexin 43 or alpha1 connexin (Cx43alpha1) gap junctions in the modulation of neural crest cell motility. Cx43alpha1 gap junctions and N-cadherin containing adherens junctions are expressed in migrating cardiac neural crest cells. Analysis of the N-cadherin knockout (KO) mouse model revealed that N-cadherin is essential for gap junction mediated dye coupling but not for expression of Cx43alpha1 gap junctions in neural crest cells. Time lapse videomicroscopy and motion analysis showed that the motility of N-cadherin KO neural crest cells were altered, but the motility changes differed compared to Cx43alpha1 KO neural crest cells. These observations suggest that the role of N-cadherin in cell motility is not simply mediated via the modulation of Cx43alpha1 mediated cell-cell communication. This was confirmed by a parallel analysis of wnt-1 deficient neural crest cells, which also showed a reduction in dye coupling, and yet no change in cell motility. Analysis of p120 catenin (p120ctn), an Amardillo family protein known to play a role in cell motility, showed that it is colocalized with N-cadherin and Cx43alpha1 in migrating neural crest cells. This subcellular distribution was altered in the N-cadherin and Cx43alpha1 KO neural crest cells. Given these results, we propose that N-cadherin and Cx43alpha1 may modulate neural crest cell motility by engaging in a dynamic cross-talk with the cell's locomotory apparatus through p120ctn signaling.  相似文献   

15.
Neural crest cells (NCC) are a transient and multipotent cell population that originates from the dorsal neural tube and migrates extensively throughout the developing vertebrate embryo. In addition to providing peripheral glia and neurons, NCC generate melanocytes as well as most of the cranio-facial skeleton. NCC migration and differentiation is controlled by a combination of their axial origin along the neural tube and their exposure to regionally distinct extracellular cues. Such contribution of extracellular ligands is especially evident during the formation of the enteric nervous system (ENS), a complex interconnected network of neural ganglia that locally controls (among other things) gut muscle movement and intestinal motility. Most of the ENS is derived from a small initial pool of NCC that undertake a long journey in order to colonize - in a rostral to caudal fashion - the entire length of the prospective gut. Among several signaling pathways known to influence enteric NCC colonization, GDNF/RET signaling is recognized as the most important. Indeed, spatiotemporally controlled secretion of the RET ligand GDNF by the gut mesenchyme is chiefly responsible for the attraction and guidance of RET-expressing enteric NCC to and within the embryonic gut. Here, we describe an ex vivo cell migration assay, making use of a transgenic mouse line possessing fluorescently labeled NCC, which allows precise quantification of enteric NCC migration potential in the presence of various growth factors, including GDNF.  相似文献   

16.
Mathematical and computational modeling enables biologists to integrate data from observations and experiments into a theoretical framework. In this review, we describe how developmental processes associated with stem‐cell‐driven growth of tissue in both the embryonic and adult nervous system can be modeled using cellular automata (CA). A cellular automaton is defined by its discrete nature in time, space, and state. The discrete space is represented by a uniform grid or lattice containing agents that interact with other agents within their local neighborhood. This possibility of local interactions of agents makes the cellular automata approach particularly well suited for studying through modeling how complex patterns at the tissue level emerge from fundamental developmental processes (such as proliferation, migration, differentiation, and death) at the single‐cell level. As part of this review, we provide a primer for how to define biologically inspired rules governing these processes so that they can be implemented into a CA model. We then demonstrate the power of the CA approach by presenting simulations (in the form of figures and movies) based on building models of three developmental systems: the formation of the enteric nervous system through invasion by neural crest cells; the growth of normal and tumorous neurospheres induced by proliferation of adult neural stem/progenitor cells; and the neural fate specification through lateral inhibition of embryonic stem cells in the neurogenic region of Drosophila.  相似文献   

17.
Our previous studies showed an essential role for connexin 43 or α1 connexin (Cx43α1) gap junctions in the modulation of neural crest cell motility. Cx43α1 gap junctions and N-cadherin containing adherens junctions are expressed in migrating cardiac neural crest cells. Analysis of the N-cadherin knockout (KO) mouse model revealed that N-cadherin is essential for gap junction mediated dye coupling but not for expression of Cx43α1 gap junctions in neural crest cells. Time lapse videomicroscopy and motion analysis showed that the motility of N-cadherin KO neural crest cells were altered, but the motility changes differed compared to Cx43α1 KO neural crest cells. These observations suggest that the role of N-cadherin in cell motility is not simply mediated via the modulation of Cx43α1 mediated cell-cell communication. This was confirmed by a parallel analysis of wnt-1 deficient neural crest cells, which also showed a reduction in dye coupling, and yet no change in cell motility. Analysis of p 120 catenin (p 120ctn), an Amardillo family protein known to play a role in cell motility, showed that it is colocalized with N-cadherin and Cx43α1 in migrating neural crest cells. This subcellular distribution was altered in the N-cadherin and Cx43α1 KO neural crest cells. Given these results, we propose that N-cadherin and Cx43α1 may modulate neural crest cell motility by engaging in a dynamic cross-talk with the cell's locomotory apparatus through p120ctn signaling.  相似文献   

18.
The majority of neurones and glia of the enteric nervous system (ENS) are derived from the vagal neural crest. Shortly after emigration from the neural tube, ENS progenitors invade the anterior foregut and, migrating in a rostrocaudal direction, colonise in an orderly fashion the rest of the foregut, the midgut and the hindgut. We provide evidence that activation of the receptor tyrosine kinase RET by glial cell line-derived neurotrophic factor (GDNF) is required for the directional migration of ENS progenitors towards and within the gut wall. We find that neural crest-derived cells present within foetal small intestine explants migrate towards an exogenous source of GDNF in a RET-dependent fashion. Consistent with an in vivo role of GDNF in the migration of ENS progenitors, we demonstrate that Gdnf is expressed at high levels in the gut of mouse embryos in a spatially and temporally regulated manner. Thus, during invasion of the foregut by vagal-derived neural crest cells, expression of Gdnf was restricted to the mesenchyme of the stomach, ahead of the invading NC cells. Twenty-four hours later and as the ENS progenitors were colonising the midgut, Gdnf expression was upregulated in a more posterior region - the caecum anlage. In further support of a role of endogenous GDNF in enteric neural crest cell migration, we find that in explant cultures GDNF produced by caecum is sufficient to attract NC cells residing in more anterior gut segments. In addition, two independently generated loss-of-function alleles of murine Ret, Ret.k- and miRet51, result in characteristic defects of neural crest cell migration within the developing gut. Finally, we identify phosphatidylinositol-3 kinase and the mitogen-activated protein kinase signalling pathways as playing crucial roles in the migratory response of enteric neural crest cells to GDNF.  相似文献   

19.
The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号