首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione S-transferase isozymes purified from normal rat liver (1-1, 1-2, 2-2, 3-3, 3-4, and 4-4), liver with hyperplastic nodules (7-7), brain (Yn1Yn1), and testis (Yn1Yn2) all had prostaglandin H2-converting activity. The prostaglandin H2 E-isomerase activity was high in 1-1 (1400 nmol/min/mg protein), 1-2 (1170), and 2-2 (420), moderate in 3-3, 3-4, 4-4, Yn1Yn1, and Yn1Yn2 (52-100), and weak but significant in 7-7 (33). The prostaglandin H2 D-isomerase activity was relatively high in 1-1 (170) and 1-2 (200), moderate in 2-2 (60) and Yn1Yn2 (43), and weak but marked in 3-3 (16), 4-4 (16), and 7-7 (14). The prostaglandin H2 F-reductase activity was remarkable in 1-1 (1250), 1-2 (920), and 2-2 (390), and weakly detected in 3-3 (24), 4-4 (28), and 7-7 (14). Glutathione was absolutely required for these prostaglandin H2-converting reactions, and its stoichiometric consumption was associated with F-reductase activity but not E- and D-isomerase activities. The Km values for glutathione and prostaglandin H2 were about 200 and 10-40 microM, respectively. By immunoabsorption analyses with various antibodies specific for each isozyme, we examined its contribution to the formation of prostaglandins D2, E2, and F2 alpha from prostaglandin H2 in 100,000g supernatants of rat liver, kidney, and testis. In the liver, about 90% of the F-reductase activity (9.8 nmol/min/mg protein) was shown to be catalyzed by the 1-2 group of isozymes. The E-isomerase activity (16.5) was catalyzed about 60 and 40% by the 1-2 and 3-4 groups, respectively; and the D-isomerase activity (3.7) was catalyzed by the 1-2 group (50%) and the 3-4 group and Yn1Yn2 (15-25%). In the kidney, the E-isomerase activity (9.4) was catalyzed by 1-1, 1-2 (40%), 2-2, 3-4 group, and 7-7 (10-20%). The F-reductase activity (3.3) was mostly catalyzed by the 1-2 group (75%). In the testis, the E-isomerase activity (3.9) was catalyzed by the 1-2 group (20-30%), the 3-4 group, and Yn1Yn2 (30-60%).  相似文献   

2.
4'-Azaflavone (=2-(pyridin-4-yl)-4H-1-benzopyran-4-one; 4) and 3-[(pyridin-4-yl)methyl]-4'-azaflavone (5) were synthesized by a simple environmentally friendly microwave-assisted one-pot method through the cyclization of 3-hydroxy-1-(2-hydroxyphenyl)-3-(pyridin-4-yl)propan-1-one (1), (E)-2'-hydroxy-4-azachalcone (2; chalcone=1,3-diphenylprop-2-en-1-one), and 2'-hydroxy-2-[(hydroxy)(pyridin-4-yl)methyl]-4'-azachalcone (3) under solventless conditions using silica-supported NaHSO(4), followed by treatment with base. In addition, N-alkyl-substituted 4'-azaflavonium bromides 6 and 7 were prepared from compounds 4 and 5, respectively. The antimicrobial and antioxidant activities of compounds 1-7 were tested. The N-alkyl-substituted 4'-azaflavonium bromides 6 and 7 showed high antimicrobial activity against the Gram-positive bacteria and the fungus tested, with MIC values close to those of reference antimicrobials ampicilline and fluconazole. The alkylated compounds 6 and 7 also showed a good antioxidant character in the two antioxidant methods, DPPH (=1,1-diphenyl-2-picrylhydrazyl) radical-scavenging and ferric reducing/antioxidant power (FRAP) tests.  相似文献   

3.
Benzofurans and another constituent from seeds of Styrax officinalis   总被引:2,自引:0,他引:2  
Akgul YY  Anil H 《Phytochemistry》2003,63(8):939-943
The benzofuran constituents of the seeds of Styrax officinalis were investigated. From the hexane extract, two new constituents named 5-(3"benzoyloxypropyl)-7-methoxy-2-(3',4'-methylenedioxyphenyl)-benzofuran (5) and 4-[3"-(1c-methylbutanoyloxy)propyl]-2-methoxy-(3',4'-methylenedioxyphenyl)-1a, 5b-dihydrobenzo-[3,4]-cyclobutaoxirene (6) were isolated together with four known compounds, 5-[3"-(1c-methylbutanoyloxy)propyl]-7-methoxy-2-(3',4'-dimethoxyphenyl)-benzofuran (4), 5-[3"-(1c-methylbutanoyloxy)propyl]-7- methoxy-2-(3',4'-methylenedioxyphenyl)-benzofuran (3), 5-(3"-acetoxypropyl)-7-methoxy2-(3',4'-methylenedioxphenyl)-benzofuran (2) and 5-(3"-hydroxypropyl)-7-methoxy-2-(3',4'-met hylenedioxyphenyl)-benzofuran (1). Although the compounds 1, 2, and 3 have been isolated previously from the seeds of Styrax obassia, this is the first record of their isolation from seeds of Styrax officinalis. The structures of the isolated compounds were established by 1D- and 2D-NMR (HMBC, HMQC, COSY), FABMS and high-resolution ESI FTMS.  相似文献   

4.
Two new iridoid glucosides, namely, 2'-O-[(2E,4E)-5-phenylpenta-2,4-dienoyl]mussaenosidic acid (1; mussaenosidic acid = [1S-(1alpha,4aalpha,7alpha,7aalpha)]-1-(beta-D-glucopyranosyloxy)-1,4a,5,6,7,7a-hexahydro-7-hydroxy-7-methylcyclopenta[c]pyran-4-carboxylic acid) and 2'-O-(4-methoxycinnamoyl)mussaenosidic acid (2), were isolated from the aerial parts of the mangrove plant Avicennia marina. Beside that, one known iridoid glucoside, 2'-O-coumaroylmussaenosidic acid (3) and four known flavones (flavone = 2-phenyl-4H-1-benzopyran-4-one) including 4',5-dihydroxy-3',7-dimethoxyflavone (4), 4',5-dihydroxy-3',5',7-trimethoxyflavone (5), 4',5,7-trihydroxyflavone (6), and 3',4',5-trihydroxy-7-methoxyflavone (7) were also isolated and identified. The structures of these compounds were elucidated by NMR spectroscopy and by low- and high-resolution mass spectrometry. The chemotaxonomic significance of these findings was discussed. In addition, each isolated compound was evaluated for the ability of alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radical-scavenging activity.  相似文献   

5.
中华青荚叶的一个新果糖酯   总被引:1,自引:0,他引:1  
从山茱萸科中华青荚叶( Helwingia chinensis )的乙醇提取物中分离得到一个新果糖酯和十个已知化合物.通过现代波谱技术分别鉴定为:2- O -(E)-咖啡酰-3- O -(3, 5-二甲氧基香豆酰)-α-D-呋喃果糖甙(1),2- O -β-D-呋喃果糖基α-D-异吡喃糖酯(2),甘草甜素(3),4′-羟基-7- O -葡萄糖-2, 3-二羟黄酮甙(4),黄豆甙(5),5-葡萄糖芹菜甙(6),7- O -葡萄糖芹菜甙(7),4- O -葡萄糖香豆酸(8), 葡萄糖咖啡酸(9), 3β-赤杨醇(10), 薯蓣皂甙3- O -{α-L-鼠李糖吡喃糖基(1→2)-[α-L-阿拉伯呋喃糖基(1→3)]-β-D-葡萄糖吡喃糖} (11).  相似文献   

6.
Wang Y  Xu K  Lin L  Pan Y  Zheng X 《Phytochemistry》2007,68(9):1300-1306
Five geranyl dihydrochalcones, 1-(2,4-dihydroxyphenyl)-3-{4-hydroxy-6,6,9-trimethyl-6a,7,8,10a-tetrahydro-6H-dibenzo[b,d]pyran-5-yl}-1-propanone (2), 1-(2,4-dihydroxyphenyl)-3-[3,4-dihydro-3,8-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone (4), 1-(2,4-dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(3,4-epoxy-4-methyl-1-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone (5), 1-(2,4-dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(4-hydroxy-4-methyl-2-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone (8), and 2-[6-hydroxy-3,7-dimethylocta-2(E),7-dienyl]-2',3,4,4'-tetrahydroxydihydrochalcone (9), along with four known geranyl flavonoids (1, 3, 6, 7), were isolated from the leaves of Artocarpus altilis. Their structures were established by spectroscopic means and by comparison with the literature values. Compounds 2, 4, and 9 exhibited moderate cytotoxicity against SPC-A-1, SW-480, and SMMC-7721 human cancer cells.  相似文献   

7.
4-Chloro-L-tryptophan (1a), 5-chloro-L-tryptophan (1b), 6-chloro-L-tryptophan (1c and 7-chloro-L-tryptophan (1d) were prepared from 4-, 5-, 6- and 7-chloroindoles (2a-d) by reaction with L-serine using tryptophan synthase. The chlorotryptophans were optically pure ( > 99% e.e).  相似文献   

8.
Nguyen AT  Fontaine J  Malonne H  Duez P 《Phytochemistry》2006,67(19):2159-2163
From cytotoxic extracts of the roots of Disporopsis aspera Engl. (Liliaceae) a homoisoflavanone, disporopsin (3-(2',4'-dihydroxy-benzyl)-5,7-dihydroxy-chroman-4-one) (1) and three rare methyl-homoisoflavanones, 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6-methyl-chroman-4-one (2), 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6,8-dimethyl-chroman-4-one (3) and 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6-methyl-8-methoxy-chroman-4- one (4) along with five other known compounds, N-trans-feruloyl tyramine (5), adenine (6), 5-(hydroxymethyl)-2-furfural (7), beta-sitosterol (8) and beta-sitosteryl glucopyranoside (9) were isolated. The structures of compounds 1-2 were elucidated by spectral data (1, 2-D NMR and EIMS). The four homoisoflavanones (1-4) were found to be cytotoxic against a series of human cancer cell lines (HCT15, T24S, MCF7, Bowes, A549 and K562) with IC(50) ranging from 15 to 200 microM. Possible biosynthesis routes for homoisoflavonoids (1-4) are discussed.  相似文献   

9.
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, 1) is a yellow ingredient isolated from turmeric (Curcumin longa). It has been shown to exhibit a variety of biological activities including antioxidative activity. In order to find more active antioxidants with 1 as the lead compound we synthesized curcumin analogues, i.e., 1,7-bis(3,4-dihydroxyphenyl)-1,6-heptadiene-3,5-dione (2), 1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (3), 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (4), 1,7-bis (4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (5), 1-(3,4-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (6), 1,7-bis(3,4-dimethoxyphenyl)-1,6- heptadiene-3,5-dione (7), 1,7-bis(4-methoxyphenyl)-1,6-heptadiene-3,5-dione (8), and 1,7-diphenyl-1,6-heptadiene-3,5-dione (9). Antioxidative effects of curcumin and its analogues against free radical initiated peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), or by cupric ion (Cu2+). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol present in the native LDL, or by the formation of thiobarbituric acid reactive substances. Kinetic analysis of the antioxidation process demonstrates that these compounds, except 7, 8, and 9, are effective antioxidants against AAPH- and Cu2+ -initiated LDL peroxidation by H-atom abstraction from the phenolic groups. Compounds 2 and 3 which bear ortho-diphenoxyl functionality possess significantly higher antioxidant activity than curcumin and other analogues, and the 4-hydroxy-3-methoxyphenyl group also play an important role in the antioxidative activity.  相似文献   

10.
In this study, we evaluated the bradykinin potentiating activity and ACE inhibitory activity of several Ang-(1-7)-related peptides: Ang-(2-7), Ang-(3-7), Ang-(4-7), Ang-(1-6), Ang-(1-5) and the selective antagonist of Ang-(1-7): D-[Ala7]Ang-(1-7) (A-779). In vivo experiments were performed in freely moving Wistar rats. ACE activity was evaluated by a fluorometric assay in rat plasma using Hip-His-Leu as a substrate. Intravenous injections of Ang-(1-7) (2.2 nmol) transformed the effect of a single dose of bradykinin (1 nmol) into the effect produced by a double dose. A similar bradykinin potentiating activity was demonstrated for Ang-(2-7) and Ang-(3-7). On the other hand, Ang-(1-5), Ang-(1-6), Ang-(4-7) and A-779 did not change the hypotensive effect of bradykinin in doses ranging from 8 up to 25 nmols. The hypotensive effect of bradykinin was increased by intravenous infusion (0.3 ng/min) of Ang-(1-7) > Ang-(2-7) > Ang-(3-7). Conversely, Ang-(1-5), Ang-(1-6), Ang-(4-7) or A-779 did not change the hypotensive effect of bradykinin. ACE inhibition with Ang-(1-7) related peptides occurred in the order: Ang-(2-7) > or = Ang-(3-7) > Ang-(1-7) [>] Ang-(1-5) > Ang-(4-7) > or = Ang-(1-6) > or = A-779. A-779 in concentrations up to 10(-5) M did not change the ACE inhibitory activity of Ang-(1-7). These results suggest that Ang-(1-7), Ang-(2-7) and Ang-(3-7) can modulate bradykinin actions in vivo. More important, our data pointed out that alternative mechanisms besides interaction with ACE are required to explain the bradykinin potentiating activity of Ang-(1-7).  相似文献   

11.
Cyclooxygenase inhibitory and antioxidant bioassay-directed extraction and purification of celery seeds yielded sedanolide (1), senkyunolide-N (2), senkyunolide-J (3), 3-hydroxymethyl-6-methoxy-2,3-dihydro-1H-indol-2-ol (4), L-tryptophan (6), and 7-[3-(3,4-dihydroxy-4-hydroxymethyl-tetrahydro-furan-2-yloxy)-4,5-dihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy]-5-hydroxy-2-(4-hydroxy-3-methoxy-phenyl)-chromen-4-one (7). The structures of compounds 1-7 were determined using spectroscopic methods. Compound 4 is reported here for the first time. At 250 pg ml(-1), compounds 1-4, 6 and 7 displayed prostaglandin H endoperoxide synthase-I (COX-I) and prostaglandin H endoperoxide synthase-II (COX-II) inhibitory activities at pH 7. The acetylated product (5) of compound 4 also inhibited COX-I and COX-II enzymes when tested at 250 microg ml(-1). Compounds 6 and 7 exhibited good antioxidant activity at concentrations of 125 and 250 microg ml(-1). Only compounds 1-3 exhibited topoisomerase-I and -II enzyme inhibitory activity at concentrations of 100, 200 and 200 microg ml(-1), respectively.  相似文献   

12.
Antioxidative compounds were isolated from the methanol extract of fresh rhizome of smaller galanga (Alpinia officinarum Hance). Seven phenylpropanoids (1-7) were obtained and their structures were elucidated by MS and NMR analyses. They comprised the two known compounds, (E)-p-coumaryl alcohol gamma-O-methyl ether (1) and (E)-p-coumaryl alcohol (6); and the five novel compounds, stereoisomers of (4E)-1,5-bis(4-hydroxy-phenyl)-1-methoxy-2-(methoxymethyl)-4-pentene (2a and 2b), stereoisomers of (4E)-1,5-bis(4-hydroxyphenyl)-1-ethoxy-2-(methoxymethyl)-4-pentene (3a and 3b), (4E)-1,5-bis(4-hydroxy-phenyl)-1-[(2E)-3-(4-acetoxyphenyl)-2-propenoxy]-2-(methoxymethyl)-4-pentene (4), (4E)-1,5-bis(4-hydroxyphenyl)-2-(methoxymethyl)-4-penten-1-ol (5), and (4E)-1,5-bis(4-hydroxyphenyl)-2-(hydroxymethyl)-4-penten-1-ol (7). Compounds 1-7 were detected for the first time as constituents of galanga rhizomes and exhibited antioxidative activities against the autoxidation of methyl linoleate in bulk phase.  相似文献   

13.
Two new cyclobutane-type norlignans, methyl rel-(1R,2S,3S)-2-(7-methoxy-1,3-benzodioxol-5-yl)-3-(2,4,5-trimethoxyphenyl)cyclobutanecarboxylate (1), and methyl rel-(1R,2R,3S)-2-(7-methoxy-1,3-benzodioxol-5-yl)-3-(2,4,5-trimethoxyphenyl)cyclobutanecarboxylate (2), and a new lignanamide, 3-hydroxy-N-[2-(4-hydroxyphenyl)ethyl]-α-[4-(2-{N-[2-(4-hydroxyphenyl)ethyl]carbamoyl}ethenyl)-3-methoxyphenoxy]-4-methoxycinnamamide 4,8″-ether (3), along with five known amides, 4-8, were obtained from the whole plant of Peperomia tetraphylla. Their structures were elucidated mainly by the analysis of NMR and MS data. The new compounds 1-3 and the known compound 4 were tested for their cytotoxic activities against the HepG2 (human hepatocarcinoma), A549 (human lung cancer), and HeLa (human cervical cancer) cell lines. Compound 4 showed significant cytotoxicity against HepG2 cell lines with an IC(50) value of 9.4 ± 1.0?μM.  相似文献   

14.
A novel flavonoid named mopanolchin (1), together with seven known flavonoids, was isolated by various chromatographic techniques and spectroscopic methods from the EtOAc extract of the roots of Lysidice rhodostegia Hance. The structure of the new compound was elucidated as 1"-(4-hydroxy-3, 5-dimethoxy)phenyl-2"-hydroxymethyl-dioxino [4', 5',1", 2"]mopanol (1) on the basis of spectral analysis.The known compounds were identified as (-)-epicatechin-3-O-gallate (2), epicatechin (3), naringenin (4),eriodictyol (5), luteolin (6), 7, 3', 4'-trihydroxyflavone (7) and (-)-robinetinidol (8).  相似文献   

15.
Bioassay-guided fractionation of an 80% MeOH extract of Juglan sinensis leaves and twigs has resulted in the isolation of three new triterpenes (1-3) and two new sesquiterpenes (4-5) along with two known sesquiterpenes (6-7). The new compounds were determined to be 3β, 11α, 19α, 24, 30-pentahydroxy-20β, 28-epoxy-28β-methoxy-ursane (1), 1α, 3β-dihydroxy-olean-18-ene (2), 2α, 3α, 23-trihydroxy-urs-12-en-28-oic acid 28-O-β-d-glucopyranoside (3), (4S, 5S, 7R, 8R, 14R)-8, 11-dihydroxy-2, 4-cyclo-eudesmane (4), 15-hydroxy-α-eudesmol-11-O-β-d-glucopyranoside (5), by spectroscopic analysis. The cytotoxicity of compounds (1-7) against four cancer cell lines such as B16F10, Hep-2, MCF-7 and U87-MG was evaluated. Compounds 1, 2, 6 and 7 showed potent cytotoxicity against all of four cancer cell lines, respectively.  相似文献   

16.
从长形肉豆蔻Myristica argentea乙醇提取物乙酸乙酯部分分离得到12个化合物,经理化和波谱分析分别鉴定为黄樟醚(1)、甲基丁香酚(2)、异甲基丁香酚(3)、3′-羟基异黄樟醚(4)、7-羟基-3′,4′-亚甲二氧基黄烷(5)、1,4-苯二甲酸二甲酯(6)、内消旋-二氢愈创木脂酸(7)、赤式-1-(4-羟基-3-甲氧基苯基)-4-(3,4-亚甲二氧基苯基)-2,3-二甲基丁烷(8)、赤式-1-(4-羟基-3-甲氧基苯基)-2-(2-甲氧基-4-(1(E)-丙烯基)苯氧基)-丙烷-1-醇(9)、nectandrin B(10)、β-谷甾醇(11)和胡萝卜苷(12)。化合物4~6和8~12为首次自该植物中分离得到,化合物4~6为首次从该属植物中分离得到。  相似文献   

17.
Four new compounds, 3-(4-hydroxy-3,5-dimethoxyphenyl)propyl formate (1), 2,6-dimethoxy-4-[(1S)-3-methoxypropyl]phenol (2), (1R,2R)-4-[(3R)-3-hydroxybutyl]-3,3,5-trimethylcyclohex-4-ene-1,2-diol (3), and (1S,3R,3aR,6S,7S,9aR)-decahydro-1-(hydroxymethyl)-1,7-dimethyl-3a,7-methano-3aH-cyclopentacyclooctene (4) were isolated from the leaves of Acer truncatum, together with twelve known compounds. Their structures were elucidated on the basis of extensive spectroscopic techniques. The absolute configuration of compound 3 was established by the modified Mosher's method. All compounds were evaluated for antibacterial activities.  相似文献   

18.
Three new phenolics: ((7S)-8'-(benzo[3',4']dioxol-1'-yl)-7-hydroxypropyl)benzene-2,4-diol (1), ((7S)-8'-(4'-hydroxy-3'-methoxyphenyl)-7-hydroxypropyl)benzene-2,4-diol (2) and ((8R,8'S)-7-(4-hydroxy-3-methoxyphenyl)-8'-methylbutan-8-yl)-3'-methoxybenzene-4',5'-diol (3), along with four known compounds (4-7) were isolated from the seeds of Myristica fragrans. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against LPS-induced NO production in macrophage RAW264.7 cells.  相似文献   

19.
刘安韬  张婷  梁杏梅 《广西植物》2018,38(4):469-474
该研究采用大孔树脂(D101)、硅胶、羟丙基葡聚糖凝胶(Sephadex LH-20)和十八烷基硅烷键合硅胶(ODS)等色谱方法,对鸭儿芹的化学成分进行了分离纯化,根据理化性质、质谱和核磁共振波谱数据,并参考相关文献综合分析化合物结构,进而采用噻唑蓝(MTT)法,对鸭儿芹化合物抗Hep G2细胞活性进行筛选。结果表明:共从鸭儿芹中分离鉴定了7个化合物,分别为p-(acetylamino)phenol(1),辛酸甲酯(2),丁酸异戊酯(3),N,N-二甲基-苯并咪唑-2胺(4),5-羟基-1-(4-羟基-3-甲氧苯基)庚3酮(5),3,5二丁基六氢吡咯里嗪(6),(S)-4-(1-hydroxyallyl)phenyl acetate(7)。其中,化合物6对细胞具有抑制作用,抑制率达到89.1%。该研究结果表明化合物1-7均为首次从鸭儿芹中分离得到,其中化合物6对Hep G2细胞的生长具有抑制作用,且具有剂量依赖性。  相似文献   

20.
Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号