首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

2.
The effects of potato [Solanum tuberosum L. (Solanaceae)] plant damage on the host plant-selection behaviour of the potato aphid, Macrosiphum euphorbiae Thomas (Homoptera: Aphididae), were studied. The damage inflicted to the plant was only of short duration and observations on aphid behaviour were made immediately following plant damage. The underlying questions of the study were to know how much time it takes for plant defence mechanisms to be activated and if this activation had noticeable repercussions on aphid behaviour. We considered stresses of various natures: biotic (pre-infestation by conspecifics or by Colorado potato beetles) and abiotic (scissor cuts). Aphid responses to host plant semiochemicals were investigated using a darkened arena bioassay and the probing behaviour was assessed using the electrical penetration graph technique. Aphids were attracted to their host plant (undamaged or damaged). In a preference test (undamaged plant vs. damaged plant), plants previously infested by conspecifics were preferred to undamaged plants, but this preference was not observed for heterospecific and abiotic damage. However, aphid probing behaviour was not modified on plants previously infested by conspecifics, whereas some changes were observed subsequently to heterospecific and abiotic damages. Our data present evidence that plants can respond to biotic and abiotic stresses soon after the damage is inflicted and when the damage is of short duration. The diverse consequences of these various local plant responses on M. euphorbiae behaviour are discussed in the context of plant defence strategies against aphid colonization.  相似文献   

3.
Damage to potatoes by Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (both Hemiptera: Aphididae) can be controlled through plant resistance. We used ethological experiments and electric penetration graph (EPG) analysis to evaluate the role of host selection in the previously assessed resistance levels of Solanum accessions: Solanum circaeifolium Bitter subsp. capsicibaccatum (Cárdenas) (PI210036), S. chomatophilum Bitter (PI243340 and PI310990), S. okadae Hawkes & Hjert. (PI458367), S. oplocense Hawkes (PI473368), S. pinnatisectum Dunal (PI186553), S. polyadenium Greenm. (PI230463), S. tarijense Hawkes (PI414150), and S. trifidum Correll (PI255538), to M. euphorbiae and M. persicae. Through multivariate analysis, we grouped behavioural variables into factors, which we related to host selection behaviours, and then evaluated whether factors varied between each accession and the susceptible S. tuberosum. None of the factors obtained by ethological experiments differed among accessions. Four of six and three of five factors obtained through EPG varied among accessions for M. euphorbiae and M. persicae, respectively, and were used to suggest resistance characteristics. The resistance to M. persicae of both S. chomatophilum accessions was associated with pathway activity disturbance. Solanum tarijense and S. polyadenium resistance to M. persicae resulted from leaf surface characteristics, which may be trichomes. Solanum oplocense and S. trifidum resistance to M. euphorbiae resulted from the wound response system, whereas S. pinnatisectum resistance may stem from nutritionally unbalanced or toxic phloem sap. Solanum polyadenium resistance to M. euphorbiae was phloem‐based. Solanum circaeifolium ssp. capsicibaccatum resistance to M. persicae, and the resistance of PI243340 S. chomatophilum and S. tarijense to M. euphorbiae were not related to host selection and therefore were presumably due to physiologically active compounds.  相似文献   

4.
The effects of different levels of fertilization with nitrogen and potassium (NK), height within the canopy and plant age of Lycopersicon hirsutum f. glabratum (PI 134417) C. H. Mull and L. esculentum on the density of foliar cristalliferous idioblasts and trichomes, and on the levels of 2- tridecanone (2-TD) and 2-undecanone (2-UD) and their influence on the resistance to Myzus persicae (Sulzer) were investigated. NK levels were inversely related to densities of trichomes and cristalliferous idioblasts in L. esculentum, but only to densities of cristalliferous idioblasts in L. hirsutum. Trichome density increased with increasing height within the canopy and with plant age in L. esculentum and L. hirsutum. Density of cristalliferous idioblasts in L. hirsutum increased with canopy height reaching a maximum at mid-height within the canopy in opposition to L. esculentum in which a small decrease in density with height within the canopy was found. There was also a small decrease of idioblast density with increasing plant age for L. esculentum, while a greater and opposite variation took place in L. hirsutum. L. esculentum has mainly non- glandular leaf trichomes (90%), while L. hirsutum has mainly glandular trichomes (97%). The main glandular trichomes of L. hirsutum are producers of 2-TD and 2-UD, whose leaf content increases with increase of trichome density. A negative effect of 2-TD concentration and cristalliferous idioblast density on the survival and longevity of M. persicae was observed. Since L. hirsutum presented much higher levels of 2-TD and cristalliferous idioblast density than L. esculentum, L. hirsutum seems a promising source of resistance to M. persicae for tomato breeding programs.  相似文献   

5.
Abstract Plants protect themselves against aphid attacks by species‐specific defense mechanisms. Previously, we have shown that Solanum stoloniferum Schlechtd has resistance factors to Myzus persicae Sulzer (Homoptera: Aphididae) at the epidermal/mesophyll level that are not effective against Macrosiphum euphorbiae Thomas (Homoptera: Aphididae). Here, we compare the nymphal mortality, the pre‐reproductive development time, and the probing behavior of M. persicae and M. euphorbiae on S. stoloniferum and Solanum tuberosum L. Furthermore, we analyze the changes in gene expression in S. stoloniferum 96 hours post infestation by either aphid species. Although the M. euphorbiae probing behavior shows that aphids encounter more probing constrains on phloem activities–longer probing and salivation time– on S. stoloniferum than on S. tuberosum, the aphids succeeded in reaching a sustained ingestion of phloem sap on both plants. Probing by M. persicae on S. stoloniferum plants resulted in limited feeding only. Survival of M. euphorbiae and M. persicae was affected on young leaves, but not on senescent leaves of S. stoloniferum. Infestation by M. euphorbiae changed the expression of more genes than M. persicae did. At the systemic level both aphids elicited a weak response. Infestation of S. stoloniferum plants with a large number of M. persicae induced morphological changes in the leaves, leading to the development of pustules that were caused by disrupted vascular parenchyma and surrounding tissue. In contrast, an infestation by M. euphorbiae had no morphological effects. Both plant species can be regarded as good host for M. euphorbiae, whereas only S. tuberosum is a good host for M. persicae and S. stoloniferum is not. Infestation of S. stoloniferum by M. persicae or M. euphorbiae changed the expression of a set of plant genes specific for each of the aphids as well as a set of common genes.  相似文献   

6.
The probing and feeding behaviour of the cabbage aphid, Brevicoryne brassicae (L.), (Homoptera, Aphididae) was studied on several plant species that represented various levels of acceptability: Sinapis alba L. (a permanent host plant), Capsella bursa-pastoris (L.) Med., Thlaspi arvense L., Lunaria annua L., Erysimum cheiranthoides L. (accidental host plants), Vicia faba L. (a non-host plant), using the electrical penetration graph technique (EPG). B. brassicae on V. faba did not show any patterns related to penetration of phloem vessels. Stylet penetration was deterred on L. annua and E. cheiranthoides where non-penetration prevailed, the periods of sap ingestion were short or did not occur, the percentage of time spent in the phloem was consistently low (5–6%) and E1 salivation predominated. The pathway activities were not suppressed on C. bursa-pastoris and T. arvense and the aphids spent an average of 3 h in the phloem during the 8-h experiment. However, a considerable delay between finding and accepting the phloem and a substantial proportion of E1 salivation (20–30% of all phloem activities) indicated a deterrent factor in the sieve elements of these plants. Aphid probing and sap ingestion were rarely interrupted on S. alba. The results of this study suggest that the deterrent agents vary in activity and may hinder stylet penetration at different levels (epidermis, parenchymatous tissues and/or phloem elements), depending on the plant species.  相似文献   

7.
As a consequence of selection for productive traits, the genetic diversity of Solanum tuberosum cultivars has been drastically reduced. With the goal to develop aphid-resistant potato cultivars, our objective was to quantify the resistance of 14 accessions belonging to five wild potato species ( Solanum chomatophilum , Solanum stoloniferum stoloniferum , Solanum bukasovii , Solanum marinasense and Solanum medians ) against two aphid pests, Myzus persicae and Macrosiphum euphorbiae . Aphids were reared under controlled conditions in microcages clipped on the abaxial face of mature leaves of the Solanum species. The five wild Solanum species induced more than 90% of nymph mortality in M. persicae . The mortality rate of Ma. euphorbiae was also >90% on all S. chomatophilum , S. stoloniferum and S. medians accessions and on S. bukasovii -PI 414155. When enough adult aphids emerged, that is for Ma. euphorbiae on three S. bukasovii and three S. marinasense accessions, the prereproductive period, the adult survival and fecundity were assessed. These parameters allowed us to calculate the intrinsic rate of natural increase ( rm ), the finite rate of increase and the population doubling time (DT). The rm and the finite rate of increase were significantly reduced, whereas the population's DT was significantly enhanced for most (five out of six) wild Solanum accessions. All accessions of S. chomatophilum , S. stoloniferum and S. medians and S. bukasovii -PI 414155 were highly resistant to both M. persicae and Ma. euphorbiae . In conclusion, S. chomatophilum -PI 310943 and -PI 310990, and S. stoloniferum -PI 195167, -PI 201855 and -PI 275248, can be amenable for potato breeding programmes.  相似文献   

8.
Forty‐four parthenogenetic lineages of Myzus persicae s.l. (Sulzer) from tobacco crops and peach orchards located in various regions of Greece were examined to determine their response to the insecticide pymetrozine using leaf‐dip bio‐assays. The results show that the aphid has not developed resistance, as all lineages exhibited resistance factors bellow 6.0. In transmission experiments of potato virus Y (PVY) using a lineage of the tobacco‐adapted subspecies M. persicae nicotianae Blackman on tobacco plants, one foliar application with pymetrozine provided adequate protection for 7 days. Pymetrozine significantly reduced both virus acquisition and inoculation compared with the untreated control and the reduction was comparable to a mineral oil application. These results are discussed in terms of the advantage of incorporating pymetrozine as a compound of pest management strategies against M. persicae s.l. and for control of non‐persistent viruses, especially in crops such as tobacco because of the high selection pressure from neonicotinoids resulting in potential of resistance developing in aphid populations.  相似文献   

9.
Electrical penetration graphs of Myzus persicae (Sulzer) (Homoptera: Aphididae) feeding behaviour on four resistant and two susceptible genotypes of peach (Prunus persica L. Batsch) and related species showed that resistance was mainly linked to (i) reduced duration of phloem sap uptake, (ii) reduced percentage of pattern E1 (salivary secretion into sieve elements) followed by pattern E2 (sap ingestion) and (iii) increased number of shifts from E1 to E2 and back. These results suggest the unsuitability of phloem sap, and thus repetitive failures to initiate sustained ingestion. Extensive comparisons of the EPGs also revealed more specific trends. Aphids on the most susceptible cultivar GF305 produced significantly longer potential drops than on other peach genotypes. On the resistant Rubira, aphids generated more penetrations before the first E occurred, indicating the possible presence of a resistance factor before the phloem was reached. The clone P1908 of the wild species Prunus davidiana displayed traits of both susceptibility (less but longer probes) and resistance. In particular, aphids produced more E1, suggesting difficulties in preparing sieve elements before feeding. The aphid probing process could be correlated with aphid settling behaviour and bionomics, as previously reported, and gave evidence for the existence of different mechanisms underlying resistance in the tested genotypes against M. persicae.  相似文献   

10.
Resistance level of seven accessions of wild Solanum species (Solanaceae) to Myzus persicae and Macrosiphum euphorbiae (Homoptera: Aphididae) was evaluated by measuring survival and fecundity during sleeve cage experiments and population growth on whole plants in a controlled environment. The survival was lowest on the Solanum circaeifolium spp. capsicibaccatum, Solanum pinnatisectum and Solanum trifidum accessions for M. persicae and on the S. circaeifolium spp. capsicibaccatum, Solanum okadae and S. trifidum, accessions with M. euphorbiae. Plant species significantly influenced the fecundity of both aphid species. Aphid population growth on whole plants was negatively affected by the age of the plant, but generally followed the levels of net reproductive rate on different plant species observed during the sleeve cage experiment. The population of M. persicae varied among the seven wild potato accessions with the lowest growth rates on S. circaeifolium spp. capsicibaccatum, Solanum polyadenium, Solanum tarijense and S. trifidum. The number of M. euphorbiae also varied among accessions but the smallest population was collected from S. polyadenium. The results can be used to identify sources of resistance to aphids within those accessions already known to be resistant to the Colorado potato beetle. This study highlights the difficulties involved in developing a high-throughput screening test for aphid resistance compatible with a potato breeding programme.  相似文献   

11.
The effects of concanavalin A (ConA), a glucose/mannose-specific lectin from jackbean (Canavalia ensiformis), on insect crop pests from two different orders, Lepidoptera and Homoptera, were investigated. When fed to larvae of tomato moth (Lacanobia oleracea) at a range of concentrations (0.02–2.0% of total protein) in artificial diet, ConA decreased survival, with up to 90% mortality observed at the highest dose level, and retarded development, but had only a small effect on larval weight. When fed to peach-potato aphids (Myzus persicae) at a range of concentrations (1–9μM) in liquid artificial diet, ConA reduced aphid size by up to 30%, retarded development to maturity, and reduced fecundity (production of offspring) by >35%, but had little effect on survival. With both insects, there was a poor correlation between lectin dose and the quantitative effect. Constitutive expression of ConA in transgenic potatoes driven by the CaMV 35S promoter resulted in the protein accumulating to levels lower than predicted, possibly due to potato not being able to adequately reproduce the post-translational processing of this lectin which occurs in jackbean. However, the expressed lectin was functionally active as a haemagglutinin. Bioassay of L. oleracea larvae on ConA-expressing potato plants showed that the lectin retarded larval development, and decreased larval weights by >45%, but had no significant effect on survival. It also decreased consumption of plant tissue by the larvae. In agreement with the diet bioassay results, ConA-expressing potatoes decreased the fecundity of M. persicae by up to 45%. ConA thus has potential as a protective agent against insect pests in transgenic crops. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Sauge MH  Lambert P  Pascal T 《Heredity》2012,108(3):292-301
The architecture and action of quantitative trait loci (QTL) contributing to plant resistance mechanisms against aphids, the largest group of phloem-feeding insects, are not well understood. Comparative mapping of several components of resistance to the green peach aphid (Myzus persicae) was undertaken in Prunus davidiana, a wild species related to peach. An interspecific F(1) population of Prunus persica var. Summergrand × P. davidiana clone P1908 was scored for resistance (aphid colony development and foliar damage) and 17 aphid feeding behaviour traits monitored by means of the electrical penetration graph technique. Seven resistance QTLs were detected, individually explaining 6.1-43.1% of the phenotypic variation. Consistency was shown over several trials. Nine QTLs affecting aphid feeding behaviour were identified. All resistance QTLs except one co-located with QTLs underlying aphid feeding behaviour. A P. davidiana resistance allele at the major QTL was associated with drastic reductions in phloem sap ingestion by aphids, suggesting a phloem-based resistance mechanism. Resistance was also positively correlated with aphid salivation into sieve elements, suggesting an insect response to restore the appropriate conditions for ingestion after phloem occlusion. No significant QTL was found for traits characterising aphid mouthpart activity in plant tissues other than phloem vessels. Two QTLs with effects on aphid feeding behaviour but without effect on resistance were identified. SSR markers linked to the main QTLs involved in resistance are of potential use in marker-assisted selection for aphid resistance. Linking our results with the recent sequencing of the peach genome may help clarify the physiological resistance mechanisms.  相似文献   

13.
Earthworm‐produced compost or vermicompost has been shown to increase resistance of plants to a variety of insect pests, but it is still unclear whether this resistance is dose dependent and whether the mechanisms responsible are the same for insect species with differing feeding habits and preferences. Therefore, we tested the effects of plants grown in various vermicompost concentrations (0, 20, 40, and 60%) on the preference and performance of generalist, Myzus persicae L., and specialist, Brevicoryne brassicae L. (both Hemiptera: Aphididae), aphid pests. Preference was evaluated with leaf disk (apterous) and whole plant (alate) choice assays. After 24 h of feeding, there was no significant negative effect on the feeding preference noted for apterae of either species of any of the treatments tested. To the contrary, apterae B. brassicae showed a significant preference for vermicompost treatments over control leaf disks. Alate M. persicae preferred alighting on control plants over vermicompost‐grown plants, but B. brassicae showed no preference toward any of the treatments tested. Both aphid species deposited significantly more nymphs on control plants than on those grown in 20% vermicompost. Furthermore, plants grown in soil amended with 20% vermicompost significantly suppressed mass accumulation, as well as numbers of adults and nymphs of both aphid species compared to controls. These data clearly show that vermicompost soil amendments can significantly influence pest aphid preference and performance on plants and that these effects are not dose dependent, but rather species and morph dependent.  相似文献   

14.
In the melon, the Vat (monogenic, dominant) resistance gene governs both an antixenotic reaction to the melon aphid Aphis gossypii Glover (Homoptera, Aphididae) and a resistance to non-persistent virus transmission, restricted to this vector species. We investigated the behavioural features and tissue localisation of the antixenosis resistance by the electrical penetration graph technique (EPG, DC system). We also compared the chemical composition in amino compounds and proteins of the phloem sap collected from two isogenic lines of melon (Cucumis melo L.), carrying the Vat gene or not. All behavioural and chemical data indicated that this resistance is constitutive. EPG analysis clearly showed that access to phloem, although delayed by alterations in pathway activities, was not impaired in terms of frequency of access or initiation of feeding. The most striking feature was, however, a very reduced duration of ingestion from phloem of resistant plants, making this compartment one of the tissues where the effects of the Vat gene are unambiguously expressed. This was confirmed by clear differential activity of phloem extracts in artificial no-choice bioassays. Chemical analyses have shown that phloem saps from the two isogenic lines were extremely similar in profiles of ninhydrin positive compounds, and contained a low total amount of free amino acids (less than 10 mM). Out of more than 40 distinguishable peaks in the chromatograms (protein and non-protein amino acids, as well as small peptides), only five differentiated the two genotypes. Two of them were increased in the resistant genotype: glutamic acid and a major unknown peak, probably a non-protein amino acid (different from pyrazolyl-alanine, a Cucumis-specific amino acid). The three others were depressed in resistant plants, and included the sulphur amino acid cystine and a peptide peak partly composed of the cysteine-containing peptide glutathione (reduced form). Sap collection also showed that phloem exudation rates, as well as total protein and glutathione levels, were depressed in phloem sap from resistant plants. Such data are all indicative of a modified phloem-sealing physiology, linked to sulfhydryl oxidation processes, in plants carrying the Vat gene. The originality of the mechanism of Vat resistance to aphids is discussed.  相似文献   

15.
Transgenesis developed in the last 20 years offers new possibilities for crop protection. The transgenic process, however, requires the use of marker fusion genes to select and visualize the transformed tissues. Although the expression products of these marker genes are stably expressed in crops, little attention has been given to assess the eventual risks of these recombinant proteins on phytophage populations. Three independent transgenic potato (Solanum tuberosum) clones from the cultivar Désirée (DG5, DG18, and DG20) carrying the commonly used nptII‐gus gene construct and exhibiting different β‐glucuronidase activity (0.843 ± 0.011, 0.576 ± 0.096, and 0.002 ± 0.000 pmol min?1.mg?1, respectively) were evaluated to determine the impact of the encoded proteins on the behaviour, development, reproduction, and demography of the peach‐potato aphid, Myzus persicae, under laboratory‐controlled light and temperature. Our results revealed that the transgenic event can alter aphid physiology or behaviour. Experiments showed a probiotic effect of one transgenic line, the DG5, resulting in reduced prereproductive period and mortality, and enhanced daily fecundity, which was expressed in a greater population growth potential (rm = 0.205 vs. rm = 0.174 of the control). In contrast, aphids fed with the DG18 line exhibited reduced adult survival and reproductive period but no alteration of their demographic parameters (rm = 0.176). Finally, no physiological alteration was induced in aphids fed on a DG20 diet (rm = 0.170). Behavioural experiments conducted in a 4‐choice olfactometer demonstrated that insects were significantly more attracted by the odour of transgenic DG18 potato plant than that of Désirée non‐transformed plant, spending twice as much time in the DG18 plant odour. The two other transformed clones (DG5 and DG20) were as attractive as the non‐transformed cultivar. It is concluded that the β‐glucuronidase expression in potato plants might be responsible for the probiotic effect measured on the feeding aphids, whereas alteration of the foliage odour would result from a pleiotropic effect.  相似文献   

16.
The pea aphid, Acyrthosiphon pisum Harris (Homoptera: Aphididae), fed, developed, and reproduced on yellow lupine, Lupinus luteus L. (Fabaceae: Genisteae). No clear preferences for any variety within L. luteus were found. Acyrthosiphon pisum showed negative values of relative growth rate and no aphid completed development on any variety of narrow-leaf lupine Lupinus angustifolius L. Aphids did not ingest phloem sap while probing on L. angustifolius and the probes were very short. All varieties of L. angustifolius were rejected by aphids during an early stage of probing in peripheral tissues, that is, epidermis or mesophyll. There were qualitative and quantitative differences in alkaloid and soluble sugar content between the two lupine species. Within species, the relative content of individual compounds differed among the varieties. Lupinus angustifolius contained four quinolizidine alkaloids (13-hydroxylupanine, dehydrolupanine, lupanine, and angustifoline), while L. luteus contained two (lupanine and sparteine). Lupanine occurred in all varieties of both lupine species. The total content of soluble carbohydrates was similar in L. luteus and L. angustifolius . The following cyclitols were found in both lupine species: myo -inositol, D-ononitol, and D-pinitol. Lupinus angustifolius also contained D- chiro -inositol. The study of aphid probing behaviour, development, and reproduction demonstrated that L. luteus is a suitable host plant for A. pisum while L. angustifolius is not. It is likely that the rejection of L. angustifolius by A. pisum was caused by chemical factors detected by aphids at the epidermis and mesophyll level.  相似文献   

17.
Host plant selection and acceptance by aphids involves four consecutive steps: (1) prealighting behaviour, (2) leaf surface exploration and probing of subepidermal tissues, (3) deep probing of plant tissues, and (4) evaluation of the phloem sap. Host specialisation in aphids may involve not only different performances on potential hosts, but also different strategies for host selection and acceptance. Myzus persicae s.s. (Sulzer) (Homoptera: Aphididae) is one of the most polyphagous aphid species, although a tobacco‐adapted subspecies, M. persicae nicotianae, has been described. These two taxa constitute a good system for studying the effect of host range on host selection strategies. We studied the first two steps in the host selection process by alate virginoparae of M. persicae s.s. and M. persicae nicotianae on host and non‐host plants, using three types of behavioural assays: wind tunnel, olfactometry, and video‐recording. Alate virginoparae of M. persicae nicotianae recognised and chose their host plant more efficiently than M. persicae s.s., on the basis of olfactory and visual cues, and factors residing at cuticular and subcuticular levels. Host recognition was evident before phloem tissues were contacted. Olfactory cues were apparently not involved in host selection by M. persicae s.s.  相似文献   

18.
Prior to designation as distinct species, an appellation presently in question, the tobacco aphid, Myzus nicotianae Blackman (Homoptera: Aphididae), was classified as a tobacco-feeding form of the green peach aphid, Myzus persicae (Sulzer). In this study, RAPD polymorphisms distinguished members of the Myzus persicae complex (M. persicae and M. nicotianae) from three outgroup Myzus species (M. cerasi (F.), M. hemerocallis Takahashi, and M. varians Davidson). Polymorphisms within the complex did not separate populations on the basis of host association (tobacco versus other host plants) or geographic origin (collections from the United States, Europe, and Japan). Similarly, while GC-MS analysis of cuticular hydrocarbon profiles revealed both developmental and inter-populational differences within the M. persicae complex, it did not separate populations of tobacco feeding aphids from those collected off non-tobacco hosts. Finally, with the exception of their responses to a choice between lettuce and collards, the host preference behavior of a green peach aphid population, a red tobacco aphid population, and a green tobacco aphid population was indistinguishable in host preference experiments. These results add to a growing body of evidence suggesting M. nicotianae and M. persicae are conspecific.  相似文献   

19.
T.-Y. Chen  T.-X. Liu 《BioControl》2001,46(4):481-491
Relative consumption of three aphid species, Aphis gossypii Glover, Myzus persicae (Sulzer) and Lipaphis erysimi (Kaltenbach) (Homoptera: Aphididae), by larvae of the lacewing, Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae), was determined in the laboratory, together with effects on lacewing development and survival. Percentages of survival of C. rufilabris from first instar to adult eclosion were significantly different among lacewing larvae fed different aphid species. When larvae were fed A. gossypii and M. persicae, all larvae developed to adulthood. All larvae died prematurely when they were fed L. erysimi. Developmental duration of C. rufilabris larvae was significantly shorter when larvae were fed A. gossypii (18.0 d) than when larvae were fed M. persicae (19.2 d). The number of fourth instar aphids consumed during development by C. rufilabris larvae differed significantly among individuals fed different aphid species. Chrysoperla rufilabris consumed an average of 168 M. persicae, followed by 141.6 A. gossypii, and only 26.6 L. erysimi. The percentage of these total number of aphids consumed by each larval stadium of C. rufilabris varied significantly among aphid species. The percentage of A. gossypii consumed by each larval stadium was similar to that for M. persicae, 12.1 and 11.4% by the first instar, 15.7 and 13.1% by the second instar, and 72.2 and 75.5% by the third instar, respectively; whereas in the case of L. erysimi, 23.3% of the total number of aphids were consumed by the first instar, 30.1% by the second instar, and 46.6% by the third instar.  相似文献   

20.
施钾与蚜害处理后马铃薯叶片中多酚氧化酶活性的变化   总被引:2,自引:0,他引:2  
马晓林  白雪  李惠君  徐松鹤  任琴 《昆虫学报》2013,56(12):1413-1417
蚜虫危害是影响马铃薯Solanum tuberosum产量和品质的重要因素之一, 而多酚氧化酶(polyphenol oxidase, PPO)与植物的抗性密切相关。为了阐明施钾条件下马铃薯与桃蚜Myzus persicae的关系, 本实验通过比色法、 iTRAQ技术和蛋白免疫印迹法研究了对照(不施钾, 不接虫)、 接虫、 施钾以及施钾+接虫4种处理后马铃薯叶片中多酚氧化酶活性的变化。结果表明: 施钾显著降低桃蚜种群数量。随着桃蚜发育期延长, 桃蚜的种群数量显著低于对照, 且6 g/株施钾量对桃蚜种群数量的抑制效果最强。以6 g/株作为施钾量, 对不同处理后马铃薯叶片中多酚氧化酶活性研究显示, 施钾、 接虫+施钾处理均使马铃薯叶片中PPO活性显著提高, 分别比对照增加了44%和67%。通过液相色谱 质谱/质谱联用仪(LC-MS/MS) 分析, 接虫、 施钾、 接虫+施钾处理均不同程度上调了PPO蛋白表达量。Western杂交结果显示: 施钾、 接虫+施钾处理显著增加了PPO的相对表达量, 且接虫+施钾处理使该相对表达量达到最高。结果说明, 施钾、 接虫+施钾处理通过诱导马铃薯叶片中的PPO活性, 从一个侧面提高了马铃薯抗蚜虫能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号