首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C M O'Callahan  M M Hosey 《Biochemistry》1988,27(16):6071-6077
Evidence from electrophysiological and ion flux studies has established that dihydropyridine-sensitive calcium channels are subject to regulation by neurotransmitter-mediated phosphorylation and dephosphorylation reactions. In the present study, we have further characterized the phosphorylation by cAMP-dependent protein kinase and a multifunctional Ca/calmodulin-dependent protein kinase of the membrane-associated form of the 165-kDa polypeptide identified as the skeletal muscle dihydropyridine receptor. The initial rates of phosphorylation of the 165-kDa peptide by both protein kinases were found to be relatively good compared to the rates of phosphorylation of established substrates of the enzymes. Phosphorylation of the 165-kDa peptide by both protein kinases was additive. Prior phosphorylation by either one of the kinases alone did not preclude phosphorylation by the second kinase. The cAMP-dependent protein kinase phosphorylated the 165-kDa peptide preferentially at serine residues, although a small amount of phosphothreonine was also formed. In contrast, after phosphorylation of the 165-kDa peptide by the Ca/calmodulin-dependent protein kinase, slightly more phosphothreonine than phosphoserine was recovered. Phosphopeptide mapping indicated that the two kinases phosphorylated the peptide at distinct as well as similar sites. Notably, one major site phosphorylated by the cAMP-dependent protein kinase was not phosphorylated by the Ca/calmodulin-dependent protein kinase, while other sites were phosphorylated to a high degree by the Ca/calmodulin-dependent protein kinase, but to a much lesser degree by the cAMP-dependent protein kinase. The results show that the 165-kDa dihydropyridine receptor from skeletal muscle can be multiply phosphorylated at distinct sites by the cAMP- and Ca/calmodulin-dependent protein kinases. As the 165-kDa peptide may be the major functional unit of the dihydropyridine-sensitive Ca channel, the results suggest that the phosphorylation-dependent modulation of Ca channel activity by neurotransmitters may involve phosphorylation of the 165-kDa peptide at multiple sites.  相似文献   

2.
Photoaffinity labelling of Ca2+ channels with [3H]azidopine   总被引:7,自引:0,他引:7  
A 1,4-dihydroypyridine arylazide photoaffinity ligand, [3H]azidopine (50.6 Ci/mmol), has been synthesized. [3H]Azidopine binds reversibly with a Kd of 350 pM to guinea-pig skeletal muscle membranes in the absence of ultraviolet light. The reversible [3H]azidopine binding is inhibited steroselectively by 1,4-dihydropyridines, phenylalkylamine Ca2+ channel blockers and La3+. Covalent incorporation into membrane proteins after photolysis was investigated by sodium dodecyl sulfate polyacrylamide slab gel electrophoresis. [3H]Azidopine is photoincorporated specifically into a protein of Mr approximately 145 000. The covalent labelling of the Mr approximately 145 000 band is inhibited stereoselectively by drugs and cations which block the reversible [3H]azidopine binding. It is suggested that [3H]azidopine is photoincorporated into a subunit of the putative Ca2+ channel.  相似文献   

3.
Photoaffinity labelling of tryptic and chymotryptic heavy meromyosin with 3′O-3-[N-(4-azido-2-nitrophenyl) amino]propionyl-adenosine 5′-triphosphate (arylazido-β-alanine ATP) resulted in incorporation of radioactivity and inhibition of the ATPase activity. ATP prevented the reaction with the photoaffinity label, as shown by the lack of incorporation of 3H and intact ATPase activity. On the tryptic digestion of either type of photoaffinity labeled HMM the label was found in a 25K peptide identifiable with the N-terminus of the myosin heavy chain (Lu et al., Fed. Proc. 37 1695 1978). The results are discussed in the light of previous localization of the reactive thiol groups, SH-1 and SH-2 (Balint et al., Arch. Biochem. Biophys. 190, 793 1978).  相似文献   

4.
Dihydropyridine receptors were purified from rabbit skeletal muscle transverse tubule membranes and incorporated into planar lipid bilayers. Calcium channels from both the purified dihydropyridine receptor preparation and the intact transverse tubule membranes exhibited two sizes of unitary currents, corresponding to conductances of 7 +/- 1 pS and 16 +/- 3 pS in 80 mM BaCl2. Both conductance levels were selective for divalent cations over monovalent cations and anions. Cadmium, an inorganic calcium channel blocker, reduced the single channel conductance of calcium channels from the purified preparation. The organic calcium channel antagonist nifedipine reduced the probability of a single channel being open with little effect on the single channel conductance. The presence of two conductance levels in both the intact transverse tubule membranes and the purified dihydropyridine receptor preparation suggests that the calcium channel may have multiple conductance levels or that multiple types of calcium channels with closely related structures are present in transverse tubule membranes.  相似文献   

5.
The dihydropyridine receptor purified from rabbit skeletal muscle yields in the presence of dithiothreitol and sodium dodecyl sulfate on polyacrylamide gels bands of apparent molecular mass 165 +/- 5, 130 +/- 5, 55 +/- 3, 32 +/- 2 and 28 +/- 1 kDa (chi +/- SEM, n = 12). Under nonreducing conditions, the 130 kDa and 28-kDa peptides migrate as a single peptide of 165 kDa. These peptides were separated on a HPLC size-exclusion column. The specific absorption coefficients of the isolated peptides were determined. From these a stoichiometry of 1:1.7 +/- 0.2:1.4 +/- 0.3 (chi +/- SEM of 12 experiments with three different preparations) was calculated for the 165-kDa, 55-kDa and 32-kDa peptides. The relative amount of the 130/28-kDa peptide varied with different preparations. Tryptic, chymotryptic and V-8 protease peptides of the isolated proteins suggested that the 130/28-kDa peptide was not related to the 165-kDa peptide. The dihydropyridine photoaffinity analog (+/-)-azidopine was specifically incorporated only into the 165-kDa peptide with an efficiency of about 2.4%. The azido analog of desmethoxyverapamil, LU 49888, was specifically incorporated into the same peptide with an efficiency of 1.5%. These results suggest that only the 165-kDa peptide contains the regulatory sites detected so far in the voltage-operated L-type calcium channel. They suggest further that the 130/28-kDa peptide, which migrates as a 165-kDa peptide under nonreducing conditions, does not contain high-affinity binding sites for the calcium channel blockers.  相似文献   

6.
The tritiated arylazido phenylalkylamine (-)-5-[(3-azidophenethyl)[N-methyl-3H]methylamino]-2-(3,4, 5-trimethoxyphenyl)-2-isopropylvaleronitrile was synthesized and used to photoaffinity label the phenylalkylamine receptor of the membrane-bound and purified calcium channel from guinea-pig skeletal muscle transverse-tubule membranes. The photoaffinity ligand binds reversibly to partially purified membranes with a Kd of 2.0 +/- 0.5 nM and a Bmax of 17.0 +/- 0.9 pmol/mg protein. Binding is stereospecifically regulated by all three classes of organic calcium channel drugs. A 155 kDa band was specifically photolabelled in transverse-tubule particulate and purified calcium channel preparations after ultraviolet irradiation. Additional minor labelled polypeptides (92, 60 and 33 kDa) were only observed in membranes. The heterogeneous 155 kDa region of the purified channel was resolved into two distinct silver-stained polypeptides after reduction (i.e. 155 and 135 kDa). Only the 155 kDa polypeptide carries the photoaffinity label and it is concluded that the 135 kDa polypeptide (which migrates as a 165 kDa band under alkylating conditions) is not a high-affinity drug receptor carrying subunit of the skeletal muscle transverse-tubule L-type calcium channel.  相似文献   

7.
The effect of dihydropyridine agonists and antagonists on neuronal voltage sensitive calcium channels was investigated. The resting intracellular calcium concentration of synaptosomes prepared from whole brain was 110 +/- 9 nM, as assayed by the indicator quin 2. Depolarisation of the synaptosomes with K+ produced an immediate increase in [Ca2+]i. The calcium agonist Bay K 8644 and antagonist nifedipine did not affect [Ca2+]i under resting or depolarising conditions. In addition, K+ stimulated 45Ca2+ uptake into synaptosomes prepared from the hippocampus was insensitive to Bay K 8644 and PY 108-068 in normal or Na+ free conditions. In neuronally derived NG108-15 cells the enantiomers of the dihydropyridine derivative 202-791 showed opposite effects in modulating K+ stimulated 45Ca2+ uptake. (-)-R-202-791 inhibited K+ induced 45Ca2+ uptake with an IC50 of 100 nM and (+)-S-202-791 enhanced K+ stimulated uptake with an EC50 of 80 nM. These results suggest that synaptosomal voltage sensitive calcium channels either are of a different type to those found in peripheral tissues and cells of neural origin or that expression of functional effects of dihydropyridines requires different experimental conditions to those used here.  相似文献   

8.
M Taki  H Nakayama  Y Kanaoka 《FEBS letters》1991,283(2):259-262
A new 1,4-dihydropyridine photoaffinity ligand, [3H]diazipine, has been assessed by binding and photolabeling, and compared with a currently used [3H]azidopine. [3H]Diazipine reversibly binds to skeletal muscle Ca2+ channels with a similar affinity to [3H]azidopine, but [3H]diazipine labels the channel two times more efficiently and no release of the incorported amount is observed after dithiothreitol treatment.  相似文献   

9.
Photoreactive and radioiodinated derivatives of several scorpion toxins acting on insect Na+ channels were prepared without loss of their pharmacological activities. Photoaffinity experiments were carried out on a synaptosomal fraction from the nerve cord of the cockroach Periplaneta americana: with all toxin derivatives, a single specifically labeled band was obtained with a molecular weight of 188,000 +/- 12,000 (n = 17). These results indicate for the first time the molecular weight of the scorpion toxin receptor from the insect nervous system which is probably associated with voltage sensitive Na+ channels. One of these toxins, toxin VII from Tityus serrulatus venom, has been previously shown to be active both in mammals and in insects, in rat brain synaptosomes this toxin labeled a Mr = 31,000 +/- 4,000 band in contrast, to observations in the insect preparation.  相似文献   

10.
11.
The actions of the optical enantiomers of BAY K 8644 and Sandoz 202,791 were studied on barium inward currents recorded using the whole-cell configuration of the patch clamp technique from enzymatically isolated smooth muscle cells from the rabbit ear artery. The enantiomers were applied by bath perfusion or rapidly by a concentration jump technique, which enabled the study of drug action under equilibrium and nonequilibrium conditions. A larger effect of agonists was seen on peak inward current in 110 mM Ba when small rather than large depolarizations were applied. The midpoint voltage of the steady-state inactivation curve of IBa was -12.8 +/- 1.9 mV (n = 4) in the absence of drug, -16.4 +/- 2.5 mV (n = 4) in 1 microM (+)202,791, and -31.4 +/- 0.4 mV (n = 4) in 1 microM (-)202,791. The rate of onset of action of the agonist and antagonist enantiomers of BAY K 8644 and Sandoz 202,791 was studied by rapid application during 20-ms depolarizing steps from different holding potentials to +30 mV at 1 or 0.2 Hz. The drugs were applied as concentration jumps between two single pulses of a pulse train. The rates of onset of drug action on peak IBa during a 1-Hz pulse train were concentration dependent over the range of 100 nM-3 microM for both (+) and (-)202,791. The rate of onset of inhibition of peak current by antagonist enantiomers was not significantly influenced by the test pulse frequency. At a holding potential of -60 mV, the onset rate of the increase in peak IBa on application of 1 microM of agonist enantiomers (+)202,791 or (-)BAY K 8644 during a train of pulses occurred with mean time constants of 2.1 +/- 0.7 s (n = 7) and 2.3 +/- 0.2 s (n = 4), respectively. The onset of current increase on application of 1 microM (+)202,791 during a single voltage clamp step to 20 mV was faster, with a mean time constant of 380 +/- 80 ms (n = 3).  相似文献   

12.
We investigated the effect of extracellular calcium on protein phosphorylation stimulated by collagen in rabbit platelets. We found that collagen-induced increase in 40 kDa protein phosphorylation was maximum at 2 mM Ca2+, and was evident in buffer with zero Ca2+ but not in the presence of EGTA. We also studied the effects of a new dihydropyridine derivative, which has antithrombotic properties, on protein phosphorylation induced by collagen. This compound inhibited the phosphorylation of 40 kDa and 20 kDa protein independently of the extra-cellular Ca2+. The inhibitory effect was dose-dependent but not time-dependent and was more evident when the drug was added before or simultaneously with collagen.  相似文献   

13.
1. An ATP analogue with a photoactivated azide group attached to the gamma-phosphate via an amide bond, ATP gamma-p-azidoanilide, appeared to have potential use as a photoaffinity label for the nucleotide-binding regions of ATP: guanidine phosphotransferases. Upon photolysis in the presence of lobster muscle arginine kinase and rabbit muscle creatine kinase, the analogue is converted to a potent inhibito of these two kinases. This photo-dependent inhibition is specific as it cannot be induced by azidoaniline, a mixture of azidoaniline and ATP or by ATP gamma-p-aminoanilide. Preirradiated under suitable conditions, the photoanalogue still shows a transitory inhibitory effect which, however, slowly vanishes with time (t0.5 = 3 h). 2. The photoinhibition is significantly decreased by the presence of ATP or ADP but is completely prevented by the addition of a mixture of nucleotide and guanidine substrates. Differential spectroscopy and affinity chromatography on Sepharose-ATP demonstrated the inability of photoinactivated arginine kinase and creatine kinase to recognize their nucleotide substrates. 3. Experiments with [14C]ATP gamma-p-azidoanilide indicated that photolysis is associated with an irreversible and stoichiometric binding of the ATP analogue to the enzymes. Autoradiographs made with the peptide maps corresponding to the tryptic digests of each 14C-labelled photomodified enzyme showed an unexpected highly specific labelling of the proteins. 4. Thiiol titrations of the kinases which have been subjected to various photolysis conditions led to the conclusion that the arylnitrene moiety of the photoanalogue is covalently attached to the single reactive cysteinyl side chain present in the active-site region of the two homologous kinases. This amino acid residue appears, therefore, to be located near the phosphate chain binding subsite occupied by the ATP analogue and probably also by the natural nucleotide substrates.  相似文献   

14.
Two target polypeptides were detected by photoaffinity labelling of purified mung bean mitochondria using tritiated 2-azido-N6-benzylaminopurine. SDS-PAGE and fluorography of total mitochondrial proteins after the photoaffinity reaction showed a labelled 32 kDa polypeptide (intensely labelled) and a 57 kDa polypeptide (less intensely labelled). The latter was assumed to be the and/or subunit of F1ATPase since it was the most abundant polpeptide in gels stained with Coomassie Blue. Partial purification of F1ATPase demonstrated that the 32 kDa polypeptide was not a component of the ATPase complex. Fractionation experiments showed that the 32 kDa protein was integrally associated with mitochondrial membranes and could be enriched by simple washing and detergent extraction procedures.  相似文献   

15.
The binding of dihydropyridine (PN200-110) to skeletal muscle microsomes (which were 84% sealed inside-out vesicles) was not influenced by the addition of calcium or magnesium nor by addition of their chelators (EDTA or EGTA) unless the vesicles were pretreated with the calcium-magnesium ionophore A23187 and EDTA to remove entrapped cations. Separation of inside-out vesicles from right-side-out vesicles by wheat germ agglutinin chromatography revealed that only the right-side-out vesicles exhibited a calcium-, magnesium-, and chelator-dependent binding of PN200-110. Dihydropyridine binding to cardiac sarcolemma membranes (which were 46% inside-out) and to solubilized skeletal muscle membranes was inhibited by EDTA and could be fully restored by 10 microM calcium or 1 mM magnesium. Calcium increased PN200-110 binding to partially purified rabbit skeletal muscle calcium channels from 3.9 pmol/mg protein to 25.5 pmol/mg protein with a pK0.5 = 6.57 +/- 0.059 and a Hill coefficient of 0.56 +/- 0.04. Magnesium increased binding from 0.7 pmol/mg protein to 16.8 pmol/mg protein with a pK0.5 = 3.88 +/- 0.085 and a Hill coefficient of 0.68 +/- 0.074. These studies suggest that calcium binding to high affinity sites or magnesium binding to low affinity sites on the extracellular side of skeletal muscle T-tubule calcium channels regulates dihydropyridine binding. Further, similar calcium and magnesium binding sites exist on the cardiac calcium channel and serve to allosterically regulate dihydropyridine binding.  相似文献   

16.
It has been shown on the frog auricle fibres by the method of double sucrose bridge that the dependence of the effect of dihydropyridine Ca agonists BAYK 8644, CGP 28 392 and (-S)202 = 791 on calcium channels on the membrane potential is to a large extent due to the activation and following inactivation of Ca channels "silent" in the control. This effect takes place due to a shift by Ca agonists of the stationary curve of channel activation to hyperpolarization. The absence of stimulus-dependence of the agonist effect and constant time of Ca current reactivation suggest that the agonists bind with resting channels.  相似文献   

17.
Lacidipine, a new, long-acting antihypertensive dihydropyridine calcium antagonist was tested for potential antioxidant effect in a series of tests that consider specific radical species. A direct quenching of several radical species could be measured. Moreover, in biological membranes deriving from rat brain tissue, lacidipine showed an activity comparable to reference antioxidant compounds like vitamin E.  相似文献   

18.
Incubation of pig desoctapeptide-(B23-30)-insulin with trypsin in solvent systems consisting of dimethyl sulphoxide, butane-1,4-diol and Tris buffer resulted in the formation of an extra peptide bond between Arg-B22 and Gly-A1 in the DOPI molecule. This DOPI derivative can also be regarded as pig des-(23-63)-proinsulin. The structure of the new, previously unreported, proinsulin analogue was determined on the basis of amino acid analysis, dansylation and digestion with Staphylococcus aureus V8 proteinase. Receptor-binding ability of des-(23-63)-proinsulin was 20% of that of pig desoctapeptide-(B23-30)-insulin and 0.02% of that of pig insulin.  相似文献   

19.
20.
A photolabile reagent, p-azidophenacyl-DL-thiocarnitine, was synthesized and tested as a photoaffinity label for carnitine acetyltransferase (EC 2.3.1.7) from pigeon breast. p-Azidophenacyl-DL-thiocarnitine is an active-site-directed reagent for this acetyltransferase, since it is a competitive inhibitor (Ki 10 microM) versus carnitine. U.v. irradiation of a mixture of p-azidophenacyl-DL-thiocarnitine and enzyme produces irreversible inhibition. Acetyl-DL-carnitine protects the enzyme from inhibition by photoactivated p-azidophenacyl-DL-thiocarnitine. In the presence of 30 mM-2-mercaptoethanol as a scavenger, the relationship between loss of activity and photoincorporation of reagent suggests that one molecule of reagent is incorporated per molecule of inhibited enzyme. However, peptide maps of enzyme labelled with p-azidophenacyl[14C]thiocarnitine indicate that several (about six) tryptic peptides (of a possible 60-65) are modified. The presence of 5 mM-acetyl-DL-carnitine significantly decreases the incorporation of reagent in each labelled tryptic peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号