共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence‐based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual‐based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self‐recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type β recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type β recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self‐recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds. 相似文献
2.
Kin associations increase the potential for inbreeding. The potential for inbreeding does not, however, make inbreeding inevitable. Numerous factors influence whether inbreeding preference, avoidance, or tolerance evolves, and, in hermaphrodites where both self‐fertilization and biparental inbreeding are possible, it remains particularly difficult to predict how selection acts on the overall inbreeding strategy, and to distinguish the type of inbreeding when making inferences from genetic markers. Therefore, we undertook an empirical analysis on an understudied type of mating system (spermcast mating in the marine bryozoan, Bugula neritina) that provides numerous opportunities for inbreeding preference, avoidance, and tolerance. We created experimental crosses, containing three generations from two populations to estimate how parental reproductive success varies across parental relatedness, ranging from self, siblings, and nonsiblings from within the same population. We found that the production of viable selfed offspring was extremely rare (only one colony produced three selfed offspring) and biparental inbreeding more common. Paternity analysis using 16 microsatellite markers confirmed outcrossing. The production of juveniles was lower for sib mating compared with nonsib mating. We found little evidence for consistent inbreeding, in terms of nonrandom mating, in adult samples collected from three populations, using multiple population genetic inferences. Our results suggest several testable hypotheses that potentially explain the overall mating and dispersal strategy in this species, including early inbreeding depression, inbreeding avoidance through cryptic mate choice, and differential dispersal distances of sperm and larvae. 相似文献
3.
Mansoureh Malekian Steven J. B. Cooper Kathleen M. Saint Melanie L. Lancaster Andrea C. Taylor Susan M. Carthew 《Ecology and evolution》2015,5(18):3939-3953
Ongoing habitat loss and fragmentation is considered a threat to biodiversity as it can create small, isolated populations that are at increased risk of extinction. Tree‐dependent species are predicted to be highly sensitive to forest and woodland loss and fragmentation, but few studies have tested the influence of different types of landscape matrix on gene flow and population structure of arboreal species. Here, we examine the effects of landscape matrix on population structure of the sugar glider (Petaurus breviceps) in a fragmented landscape in southeastern South Australia. We collected 250 individuals across 12 native Eucalyptus forest remnants surrounded by cleared agricultural land or exotic Pinus radiata plantations and a large continuous eucalypt forest. Fifteen microsatellite loci were genotyped and analyzed to infer levels of population differentiation and dispersal. Genetic differentiation among most forest patches was evident. We found evidence for female philopatry and restricted dispersal distances for females relative to males, suggesting there is male‐biased dispersal. Among the environmental variables, spatial variables including geographic location, minimum distance to neighboring patch, and degree of isolation were the most important in explaining genetic variation. The permeability of a cleared agricultural matrix to dispersing gliders was significantly higher than that of a pine matrix, with the gliders dispersing shorter distances across the latter. Our results added to previous findings for other species of restricted dispersal and connectivity due to habitat fragmentation in the same region, providing valuable information for the development of strategies to improve the connectivity of populations in the future. 相似文献
4.
Kyle A. O'Connell Kevin P. Mulder Jose Maldonado Kathleen L. Currie Dennis M. Ferraro 《Ecology and evolution》2019,9(6):3620-3636
Effective conservation and management of pond‐breeding amphibians depends on the accurate estimation of population structure, demographic parameters, and the influence of landscape features on breeding‐site connectivity. Population‐level studies of pond‐breeding amphibians typically sample larval life stages because they are easily captured and can be sampled nondestructively. These studies often identify high levels of relatedness between individuals from the same pond, which can be exacerbated by sampling the larval stage. Yet, the effect of these related individuals on population genetic studies using genomic data is not yet fully understood. Here, we assess the effect of within‐pond relatedness on population and landscape genetic analyses by focusing on the barred tiger salamanders (Ambystoma mavortium) from the Nebraska Sandhills. Utilizing genome‐wide SNPs generated using a double‐digest RADseq approach, we conducted standard population and landscape genetic analyses using datasets with and without siblings. We found that reduced sample sizes influenced parameter estimates more than the inclusion of siblings, but that within‐pond relatedness led to the inference of spurious population structure when analyses depended on allele frequencies. Our landscape genetic analyses also supported different models across datasets depending on the spatial resolution analyzed. We recommend that future studies not only test for relatedness among larval samples but also remove siblings before conducting population or landscape genetic analyses. We also recommend alternative sampling strategies to reduce sampling siblings before sequencing takes place. Biases introduced by unknowingly including siblings can have significant implications for population and landscape genetic analyses, and in turn, for species conservation strategies and outcomes. 相似文献
5.
Michael R. Garvin Christine M. Kondzela Patrick C. Martin Bruce Finney Jeffrey Guyon William D. Templin Nick DeCovich Sara Gilk‐Baumer Anthony J. Gharrett 《Ecology and evolution》2013,3(7):2362-2377
Low genetic divergence at neutral loci among populations is often the result of high levels of contemporary gene flow. Western Alaskan summer‐run chum salmon (Oncorhynchus keta) populations demonstrate weak genetic structure, but invoking contemporary gene flow as the basis for the low divergence is problematic because salmon home to their natal streams and some of the populations are thousands of kilometers apart. We used genotypes from microsatellite and single nucleotide polymorphism loci to investigate alternative explanations for the current genetic structure of chum salmon populations from western Alaska. We also estimated current levels of gene flow among Kuskokwim River populations. Our results suggest that weak genetic structure is best explained by physical connections that occurred after the Holocene Thermal Maximum among the Yukon, Kuskokwim, and Nushagak drainages that allowed gene flow to occur among now distant populations. 相似文献
6.
M. Lounnas A. A. Vázquez A. Dia J. S. Escobar A. Nicot J. Arenas R. Ayaqui M. P. Dubois T. Gimenez A. Gutiérrez C. González‐Ramírez O. Noya L. Prepelitchi N. Uribe C. Wisnivesky‐Colli M. Yong P. David E. S. Loker P. Jarne J. P. Pointier S. Hurtrez‐Boussès 《Molecular ecology》2017,26(3):887-903
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self‐fertilizing species. We here focus on the self‐fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none‐to‐low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large‐scale flash invasion may affect the spread of fasciolosis. 相似文献
7.
8.
Caroline E. Dub Emilie Boissin Alexandre Mercire Serge Planes 《Molecular ecology》2020,29(8):1508-1522
Dispersal is a critical process for the persistence and productivity of marine populations. For many reef species, there is increasing evidence that local demography and self‐recruitment have major consequences on their genetic diversity and adaptation to environmental change. Yet empirical data of dispersal patterns in reef‐building species remain scarce. Here, we document the first genetic estimates of self‐recruitment and dispersal distances in a free‐spawning marine invertebrate, the hydrocoral Millepora cf. platyphylla. Using twelve microsatellite markers, we gathered genotypic information from 3,160 georeferenced colonies collected over 27,000 m2 of a single reef in three adjacent habitats in Moorea, French Polynesia; the mid slope, upper slope, and back reef. Although the adult population was predominantly clonal (85% were clones), our parentage analysis revealed a moderate self‐recruitment rate with a minimum of 8% of sexual propagules produced locally. Assigned offspring often settled at <10 m from their parents and dispersal events decrease with increasing geographic distance. There were no discrepancies between the dispersal distances of offspring assigned to parents belonging to clonal versus nonclonal genotypes. Interhabitat dispersal events via cross‐reef transport were also detected for sexual and asexual propagules. Sibship analysis showed that full siblings recruit nearby on the reef (more than 40% settled at <30 m), resulting in sibling aggregations. Our findings highlight the importance of self‐recruitment together with clonality in stabilizing population dynamics, which may ultimately enhance local sustainability and resilience to disturbance. 相似文献
9.
Erin E. Collins John S. Hargrove Thomas A. Delomas Shawn R. Narum 《Ecology and evolution》2020,10(17):9486-9502
Fish migrations are energetically costly, especially when moving between freshwater and saltwater, but are a viable strategy for Pacific salmon and trout (Oncorhynchus spp.) due to the advantageous resources available at various life stages. Anadromous steelhead (O. mykiss) migrate vast distances and exhibit variation for adult migration phenotypes that have a genetic basis at candidate genes known as greb1L and rock1. We examined the distribution of genetic variation at 13 candidate markers spanning greb1L, intergenic, and rock1 regions versus 226 neutral markers for 113 populations (n = 9,471) of steelhead from inland and coastal lineages in the Columbia River. Patterns of population structure with neutral markers reflected genetic similarity by geographic region as demonstrated in previous studies, but candidate markers clustered populations by genetic variation associated with adult migration timing. Mature alleles for late migration had the highest frequency overall in steelhead populations throughout the Columbia River, with only 9 of 113 populations that had a higher frequency of premature alleles for early migration. While a single haplotype block was evident for the coastal lineage, we identified multiple haplotype blocks for the inland lineage. The inland lineage had one haplotype block that corresponded to candidate markers within the greb1L gene and immediately upstream in the intergenic region, and the second block only contained candidate markers from the intergenic region. Haplotype frequencies had similar patterns of geographic distribution as single markers, but there were distinct differences in frequency between the two haplotype blocks for the inland lineage. This may represent multiple recombination events that differed between lineages where phenotypic differences exist between freshwater entry versus arrival timing as indicated by Micheletti et al. (2018a). Redundancy analyses were used to model environmental effects on allelic frequencies of candidate markers, and significant variables were migration distance, temperature, isothermality, and annual precipitation. This study improves our understanding of the spatial distribution of genetic variation underlying adult migration timing in steelhead as well as associated environmental factors and has direct conservation and management implications. 相似文献
10.
Aapo Kahilainen Inka Keränen Katja Kuitunen Janne S. Kotiaho K. Emily Knott 《Molecular ecology》2014,23(20):4976-4988
Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and Calopteryx virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances in C. splendens suggests genetic drift as an important driver. However, we also observed indication of previous gene flow (revealed by a negative relationship between genetic differentiation and increasing potential connectivity of the landscape). Interestingly, genetic diversity of C. splendens was negatively related to density of C. virgo, suggesting that interspecific interactions influence the SGS of C. splendens. In contrast, genetic differentiation between C. virgo subpopulations was low and only exhibited relationships with latitude, pointing to high gene flow, colonization history and range margin effects as the drivers of SGS. The different SGSs of the two ecologically similar species caution indirect inferences of SGS based on ecologically similar surrogate species. 相似文献
11.
Kimberly J. Gilbert Rose L. Andrew Dan G. Bock Michelle T. Franklin Nolan C. Kane Jean‐Sébastien Moore Brook T. Moyers Sébastien Renaut Diana J. Rennison Thor Veen Timothy H. Vines 《Molecular ecology》2012,21(20):4925-4930
Reproducibility is the benchmark for results and conclusions drawn from scientific studies, but systematic studies on the reproducibility of scientific results are surprisingly rare. Moreover, many modern statistical methods make use of ‘random walk’ model fitting procedures, and these are inherently stochastic in their output. Does the combination of these statistical procedures and current standards of data archiving and method reporting permit the reproduction of the authors' results? To test this, we reanalysed data sets gathered from papers using the software package structure to identify genetically similar clusters of individuals. We find that reproducing structure results can be difficult despite the straightforward requirements of the program. Our results indicate that 30% of analyses were unable to reproduce the same number of population clusters. To improve this, we make recommendations for future use of the software and for reporting structure analyses and results in published works. 相似文献
12.
Fábio M. Alves Ângela L. B. Sartori Maria I. Zucchi Ana M. G. Azevedo‐Tozzi Evandro V. Tambarussi Alessandro Alves‐Pereira Anete P. de Souza 《Ecology and evolution》2018,8(13):6558-6574
The Gran Chaco is the largest continuous region of the South American dry forest, spanning Argentina, Paraguay, Bolivia, and Brazil. Prosopis rubriflora and Prosopis ruscifolia are typical tree species of chaquenian area forests, which have been subjected to continuous fragmentation caused by cattle raising. This study evaluated P. rubriflora and P. ruscifolia in areas with varying levels of disturbance. We investigated the contemporary genetic diversities of both species in areas with distinct anthropogenic disturbances. Even with a lower heterozygote frequency, disturbed areas can provide important storage for alleles, allowing the maintenance of diversity. The genetic diversity of P. rubriflora was surprisingly similar to that of P. ruscifolia (He = 0.59 and He = 0.60, respectively) even with very different distribution ranges of both species. However, P. ruscifolia exhibited a higher intrapopulation fixation index than P. rubriflora. P. rubriflora showed evidence of bottlenecking in 64% of the sampled areas, while P. ruscifolia showed such evidence in 36% of the sampled areas. Additionally, P. rubriflora had two distinct populations due to its disjunctive geographic distribution, whereas P. ruscifolia had a single population that exhibited few signs of population structure in some areas, possibly due to the main pollinators presenting a short range of dispersion. Our results suggest that 42 Chaco areas should be conserved to retain the minimum of 500 individuals necessary to maintain genetic diversity for 100–1,000 generations. This study improves our understanding of these two Prosopis species and provides information for the conservation of their genetic diversities. 相似文献
13.
Discrepancies between potential and observed dispersal distances of reef fish indicate the need for a better understanding of the influence of larval behaviour on recruitment and dispersal. Population genetic studies can provide insight on the degree to which populations are connected, and the development of restriction site‐associated sequencing (RAD‐Seq) methods has made such studies of nonmodel organisms more accessible. We applied double‐digest RAD‐Seq methods to test for population differentiation in the coral reef‐dwelling cardinalfish, Siphamia tubifer, which based on behavioural studies, have the potential to use navigational cues to return to natal reefs. Analysis of 11,836 SNPs from fish collected at coral reefs in Okinawa, Japan, from eleven locations over 3 years reveals little genetic differentiation between groups of S. tubifer at spatial scales from 2 to 140 km and between years at one location: pairwise FST values were between 0.0116 and 0.0214. These results suggest that the Kuroshio Current largely influences larval dispersal in the region, and in contrast to expectations based on studies of other cardinalfishes, there is no evidence of population structure for S. tubifer at the spatial scales examined. However, analyses of outlier loci putatively under selection reveal patterns of temporal differentiation that indicate high population turnover and variable larval supply from divergent source populations between years. These findings highlight the need for more studies of fishes across various geographic regions that also examine temporal patterns of genetic differentiation to better understand the potential connections between early life‐history traits and connectivity of reef fish populations. 相似文献
14.
Understanding the spatial scale of demographic connectivity in marine reef fishes dispersing pelagic larvae is a challenging task because of the technical difficulties associated with tagging and monitoring the movements of progeny at early life stages. Several studies highlighted a strong importance of local retention with levels of dispersal of ecological significance restricted to short distances. To date little information is available in species where pelagic dispersal lasts for long periods of time. In this work, population structure and connectivity were studied in the grey triggerfish, Balistes capriscus. Grey triggerfish larvae and juveniles remain associated with floating Sargassum sp. beds for an estimated period of 4–7 months before settling on benthic habitats where they remain sedentary as adults. Analysis of genetic variation among populations along the continental shelf of the northern Gulf of Mexico and U.S. east coast, encompassing over 3,100 km of coastline, revealed homogeneous allele frequencies and a weak isolation‐by‐distance pattern. Moment and maximum‐likelihood estimates of dispersal parameters both indicated occurrence of large neighbourhoods with estimates of the dispersal distribution parameter σ of 914 and 780 km, respectively. Simulated distributions of dispersal distances using several distribution functions all featured substantial fractions of long‐distance dispersal events with the 90% percentiles of travel distance prior to settlement averaging 1,809 km. These results suggest a high dependency of local recruitment on the output of nonlocal spawning stocks located hundreds of kilometres away and a reduced role of local retention in this species. 相似文献
15.
The population structure of benthic marine organisms is of central relevance to the conservation and management of these often threatened species, as well as to the accurate understanding of their ecological and evolutionary dynamics. A growing body of evidence suggests that marine populations can be structured over short distances despite theoretically high dispersal potential. Yet the proposed mechanisms governing this structure vary, and existing empirical population genetic evidence is of insufficient taxonomic and geographic scope to allow for strong general inferences. Here, we describe the range‐wide population genetic structure of an ecologically important Caribbean octocoral, Gorgonia ventalina. Genetic differentiation was positively correlated with geographic distance and negatively correlated with oceanographically modelled dispersal probability throughout the range. Although we observed admixture across hundreds of kilometres, estimated dispersal was low, and populations were differentiated across distances <2 km. These results suggest that populations of G. ventalina may be evolutionarily coupled via gene flow but are largely demographically independent. Observed patterns of differentiation corroborate biogeographic breaks found in other taxa (e.g. an east/west divide near Puerto Rico), and also identify population divides not discussed in previous studies (e.g. the Yucatan Channel). High genotypic diversity and absence of clonemates indicate that sex is the primary reproductive mode for G. ventalina. A comparative analysis of the population structure of G. ventalina and its dinoflagellate symbiont, Symbiodinium, indicates that the dispersal of these symbiotic partners is not coupled, and symbiont transmission occurs horizontally. 相似文献
16.
Benjamin Mimee Marc‐Olivier Duceppe Pierre‐Yves Véronneau Joël Lafond‐Lapalme Martine Jean François Belzile Guy Bélair 《Molecular ecology resources》2015,15(6):1356-1365
Cyst nematodes are important agricultural pests responsible for billions of dollars of losses each year. Plant resistance is the most effective management tool, but it requires a close monitoring of population genetics. Current technologies for pathotyping and genotyping cyst nematodes are time‐consuming, expensive and imprecise. In this study, we capitalized on the reproduction mode of cyst nematodes to develop a simple population genetic analysis pipeline based on genotyping‐by‐sequencing and Pool‐Seq. This method yielded thousands of SNPs and allowed us to study the relationships between populations of different origins or pathotypes. Validation of the method on well‐characterized populations also demonstrated that it was a powerful and accurate tool for population genetics. The genomewide allele frequencies of 23 populations of golden nematode, from nine countries and representing the five known pathotypes, were compared. A clear separation of the pathotypes and fine genetic relationships between and among global populations were obtained using this method. In addition to being powerful, this tool has proven to be very time‐ and cost‐efficient and could be applied to other cyst nematode species. 相似文献
17.
Anna Tammilehto Phillip C. Watts Nina Lundholm 《The Journal of eukaryotic microbiology》2017,64(2):248-256
The arctic phytoplankton spring bloom, which is often diatom‐dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample‐specific FST) decreased between time points as the bloom progressed, with the most drastic changes in FST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean HE = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample‐specific FST. On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population. 相似文献
18.
Jill M. Shephard Rob Ogden Piotr Tryjanowski Ola Olsson Peter Galbusera 《Ecology and evolution》2013,3(15):4881-4895
European white stork are long considered to diverge to eastern and western migration pools as a result of independent overwintering flyways. In relatively recent times, the western and northern distribution has been subject to dramatic population declines and country‐specific extirpations. A number of independent reintroduction programs were started in the mid 1950s to bring storks back to historical ranges. Founder individuals were sourced opportunistically from the Eastern and Western European distributions and Algeria, leading to significant artificial mixing between eastern and western flyways. Here we use mitochondrial and microsatellite DNA to test the contention that prior to translocation, eastern and western flyways were genetically distinct. The data show a surprising lack of structure at any spatial or temporal scale suggesting that even though birds were moved between flyways, there is evidence of natural mixing prior to the onset of translocation activities. Overall a high retention of genetic diversity, high Nef, and an apparent absence of recent genetic bottleneck associated with early 20th century declines suggest that the species is well equipped to respond to future environmental pressures. 相似文献
19.
P. Faivre‐Rampant G. Zaina V. Jorge S. Giacomello V. Segura S. Scalabrin V. Guérin E. De Paoli C. Aluome M. Viger F. Cattonaro A. Payne P. PaulStephenRaj M. C. Le Paslier A. Berard M. R. Allwright M. Villar G. Taylor C. Bastien M. Morgante 《Molecular ecology resources》2016,16(4):1023-1036
Whole genome resequencing of 51 Populus nigra (L.) individuals from across Western Europe was performed using Illumina platforms. A total number of 1 878 727 SNPs distributed along the P. nigra reference sequence were identified. The SNP calling accuracy was validated with Sanger sequencing. SNPs were selected within 14 previously identified QTL regions, 2916 expressional candidate genes related to rust resistance, wood properties, water‐use efficiency and bud phenology and 1732 genes randomly spread across the genome. Over 10 000 SNPs were selected for the construction of a 12k Infinium Bead‐Chip array dedicated to association mapping. The SNP genotyping assay was performed with 888 P. nigra individuals. The genotyping success rate was 91%. Our high success rate was due to the discovery panel design and the stringent parameters applied for SNP calling and selection. In the same set of P. nigra genotypes, linkage disequilibrium throughout the genome decayed on average within 5–7 kb to half of its maximum value. As an application test, ADMIXTURE analysis was performed with a selection of 600 SNPs spread throughout the genome and 706 individuals collected along 12 river basins. The admixture pattern was consistent with genetic diversity revealed by neutral markers and the geographical distribution of the populations. These newly developed SNP resources and genotyping array provide a valuable tool for population genetic studies and identification of QTLs through natural‐population based genetic association studies in P. nigra. 相似文献
20.
Michael D. Martin Morten Tange Olsen Jose A. Samaniego Elizabeth A. Zimmer M. Thomas P. Gilbert 《Ecology and evolution》2016,6(11):3760-3771
Common ragweed (Ambrosia artemisiifolia L.) is an invasive, wind‐pollinated plant nearly ubiquitous in disturbed sites in its eastern North American native range and present across growing portions of Europe, Africa, Asia, and Australia. Phenotypic divergence between European and native‐range populations has been described as rapid evolution. However, a recent study demonstrated major human‐mediated shifts in ragweed genetic structure before introduction to Europe and suggested that native‐range genetic structure and local adaptation might fully explain accelerated growth and other invasive characteristics of introduced populations. Genomic differentiation that potentially influenced this structure has not yet been investigated, and it remains unclear whether substantial admixture during historical disturbance of the native range contributed to the development of invasiveness in introduced European ragweed populations. To investigate fine‐scale population genetic structure across the species' native range, we characterized diallelic SNP loci via a reduced‐representation genotyping‐by‐sequencing (GBS) approach. We corroborate phylogeographic domains previously discovered using traditional sequencing methods, while demonstrating increased power to resolve weak genetic structure in this highly admixed plant species. By identifying exome polymorphisms underlying genetic differentiation, we suggest that geographic differentiation of this important invasive species has occurred more often within pathways that regulate growth and response to defense and stress, which may be associated with survival in North America's diverse climatic regions. 相似文献