首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In search of the "hair cycle clock": a guided tour   总被引:15,自引:0,他引:15  
The hair follicle, a unique characteristic of mammals, represents a stem cell-rich, prototypic neuroectodermal-mesodermal interaction system. This factory for pigmented epithelial fibers is unique in that it is the only organ in the mammalian body which, for its entire lifetime, undergoes cyclic transformations from stages of rapid growth (anagen) to apoptosis-driven regression (catagen) and back to anagen, via an interspersed period of relative quiescence (telogen). While it is undisputed that the biological "clock" that drives hair follicle cycling resides in the hair follicle itself, the molecular nature of the underlying oscillator system remains to be clarified. To meet this challenge is of profound general interest, since numerous key problems of modern biology can be studied exemplarily in this versatile model system. It is also clinically important, since the vast majority of patients with hair growth disorders suffers from an undesired alteration of hair follicle cycling. Here, we sketch basic background information and key concepts that one needs to keep in mind when exploring the enigmatic "hair cycle clock"(HCC), and summarize competing models of the HCC. We invite the reader on a very subjective guided tour, which focuses on our own trials, errors, and findings toward the distant goal of unravelling one of the most fascinating mysteries of biology: Why does the hair follicle cycle at all? How does it do it? What are the key players in the underlying molecular controls? Attempting to offer at least some meaningful answers, we share our prejudices and perspectives, and define crucial open questions.  相似文献   

2.
Notch1 is essential for postnatal hair follicle development and homeostasis   总被引:4,自引:0,他引:4  
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis.  相似文献   

3.
《Cell Stem Cell》2020,26(3):441-457.e7
  1. Download : Download high-res image (344KB)
  2. Download : Download full-size image
  相似文献   

4.
BMP signaling plays many important roles during organ development, including palatogenesis. Loss of BMP signaling leads to cleft palate formation. During development, BMP activities are finely tuned by a number of modulators at the extracellular and intracellular levels. Among the extracellular BMP antagonists is Noggin, which preferentialy binds to BMP2, BMP4 and BMP7, all of which are expressed in the developing palatal shelves. Here we use targeted Noggin mutant mice as a model for gain of BMP signaling function to investigate the role of BMP signaling in palate development. We find prominent Noggin expression in the palatal epithelium along the anterior-posterior axis during early palate development. Loss of Noggin function leads to overactive BMP signaling, particularly in the palatal epithelium. This results in disregulation of cell proliferation, excessive cell death, and changes in gene expression, leading to formation of complete palatal cleft. The excessive cell death in the epithelium disrupts the palatal epithelium integrity, which in turn leads to an abnormal palate-mandible fusion and prevents palatal shelf elevation. This phenotype is recapitulated by ectopic expression of a constitutively active form of BMPR-IA but not BMPR-IB in the epithelium of the developing palate; this suggests a role for BMPR-IA in mediating overactive BMP signaling in the absence of Noggin. Together with the evidence that overexpression of Noggin in the palatal epithelium does not cause a cleft palate defect, we conclude from our results that Noggin mediated modulation of BMP signaling is essential for palatal epithelium integrity and for normal palate development.  相似文献   

5.
6.
ObjectivesMouse incisor mesenchymal stem cells (MSCs) have self‐renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self‐renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT‐rich sequence‐binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss‐of‐function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self‐renewal and osteo/odontogenic differentiation of odontogenic MSCs.Materials and methods Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT‐PCR and Western blot analysis. Ad‐Satb2 and Ad‐siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self‐renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp 9) in vitro and in vivo.Results Satb2 was found to be expressed in mesenchymal cells and pre‐odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self‐renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo.Conclusions Satb2 promotes self‐renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio‐factor for osteogenic regeneration and tooth engineering.  相似文献   

7.
In chordates, early separation of cell fate domains occurs prior to the final specification of ectoderm to neural and non-neural as well as mesoderm to dorsal and ventral during development. Maintaining such division with the establishment of an exact border between the domains is required for the formation of highly differentiated structures such as neural tube and notochord. We hypothesized that the key condition for efficient cell fate separation in a chordate embryo is the presence of a positive feedback loop for Bmp signaling within the gene regulatory network (GRN), underlying early axial patterning. Here, we therefore investigated the role of Bmp signaling in axial cell fate determination in amphioxus, the basal chordate possessing a centralized nervous system. Pharmacological inhibition of Bmp signaling induces dorsalization of amphioxus embryos and expansion of neural plate markers, which is consistent with an ancestral role of Bmp signaling in chordate axial patterning and neural plate formation. Furthermore, we provided evidence for the presence of the positive feedback loop within the Bmp signaling network of amphioxus. Using mRNA microinjections we found that, in contrast to vertebrate Vent genes, which promote the expression of Bmp4, amphioxus Vent1 is likely not responsible for activation of cephalochordate ortholog Bmp2/4. Cis-regulatory analysis of amphioxus Bmp2/4, Admp and Chordin promoters in medaka embryos revealed remarkable conservation of the gene regulatory information between vertebrates and basal chordates. Our data suggest that emergence of a positive feedback loop within the Bmp signaling network may represent a key molecular event in the evolutionary history of the chordate cell fate determination.  相似文献   

8.
Tsukushi is a small, leucine-rich repeat proteoglycan that interacts with and regulates essential cellular signaling cascades in the chick retina and murine subventricular zone, hippocampus, dermal hair follicles, and the cochlea. However, its function in the vestibules of the inner ear remains unknown. Here, we investigated the function of Tsukushi in the vestibules and found that Tsukushi deficiency in mice resulted in defects in posterior semicircular canal formation in the vestibules, but did not lead to vestibular hair cell loss. Furthermore, Tsukushi accumulated in the non-prosensory and prosensory regions during the embryonic and postnatal developmental stages. The downregulation of Tsukushi altered the expression of key genes driving vestibule differentiation in the non-prosensory regions. Our results indicate that Tsukushi interacts with Wnt2b, bone morphogenetic protein 4, fibroblast growth factor 10, and netrin 1, thereby controlling semicircular canal formation. Therefore, Tsukushi may be an essential component of the molecular pathways regulating vestibular development.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00627-1.  相似文献   

9.
In this paper, the incorporation of methamphetamine (MA) into rat hair was studied. The main purpose of this study was to investigate whether MA can be detected or positive hair results can be obtained in hair of rats administered a single dose of MA. The relationship between dose and frequency of administration and the concentrations of MA and its metabolite, amphetamine (AP), in rat hair were evaluated and the MA and AP concentrations in white and pigmented hair were compared. MA was administered to rats as follows: low dose (0.5 mg/kg/day), medium dose (2 mg/kg/day) and high dose (10 mg/kg/day). The frequency of administration was one time per day for 1, 2, 3, 4, 5, 15 and 30 days. Hair and urine samples were collected from rats and analyzed by gas chromatography/mass spectrometry (GC/MS). MA could be identified in pigmented rat hair when MA was administered for 4 or more days at low daily dose and on day 1 following administration of medium and high daily doses. Positive results for MA were obtained from pigmented rat hair when MA was administered for 30 days at low daily dose, for 4 or more days at medium daily dose, or for 2 or more days at high daily dose. The concentrations of MA and AP found in rat hair were proportional to the dose and frequency of administration. The concentrations of MA and AP in pigmented rat hair were 2–10 times higher than those in white rat hair. The results of this study on the incorporation of MA into rat hair can serve as a model to better understand the incorporation of MA into human hair even though there are differences between animal models and human hair.  相似文献   

10.
The amino acid sequences of 369 human nonolfactory G-protein-coupled receptors (GPCRs) have been aligned at the seven transmembrane domain (TM) and used to extract the nature of 30 critical residues supposed--from the X-ray structure of bovine rhodopsin bound to retinal--to line the TM binding cavity of ground-state receptors. Interestingly, the clustering of human GPCRs from these 30 residues mirrors the recently described phylogenetic tree of full-sequence human GPCRs (Fredriksson et al., Mol Pharmacol 2003;63:1256-1272) with few exceptions. A TM cavity could be found for all investigated GPCRs with physicochemical properties matching that of their cognate ligands. The current approach allows a very fast comparison of most human GPCRs from the focused perspective of the predicted TM cavity and permits to easily detect key residues that drive ligand selectivity or promiscuity.  相似文献   

11.
Caveolin-1, a component of caveolae, regulates signaling pathway compartmentalization by interacting with tyrosine (Tyr) kinase receptors and their substrates. Perturbations in caveolae lipid composition have been shown in vitro to displace proteins from lipid microdomains, thereby altering their functionality and subsequent downstream signaling. The role of caveolin-1 in insulin receptor (IR) signaling has been widely investigated in vitro mainly in 3T3-L1 adipocyte cells. However, in vivo experiments investigating this connection in liver tissue have not been carried out. The objective of the present study was to investigate the effects of a high-cholesterol diet on caveolin-1 expression and IR localization and activity in the rat liver. Compared with a standard diet, rats fed with diet rich in cholesterol significantly altered liver caveolae by increasing both caveolin-1 (66%, P < 0.05) and caveolin-2 (55%, P < 0.05) expression while caveolin-1 mRNA levels were reduced. Concomitantly, a 25% increase in localization of the caveolae-resident signaling protein IR was observed. The distribution of caveolar and noncaveolar phosphorylated IR was unaffected but insulin-induced IR activation was significantly enhanced following consumption of the high-cholesterol diet (120%, P < 0.001). However, the downstream molecules IRS-1 and Akt have shown impaired activity in cholesterol-fed rats suggesting insulin resistance condition. Insulin stimulation failed to induce Tyr phosphorylation of caveolin-1 in cholesterol-fed rats. These findings suggest a mechanism by which a high-cholesterol diet altered caveolin-1 expression in vivo accompanied by altered IR localization and activity.  相似文献   

12.
Adenylate cyclase from bovine brain cortex was reconstituted into liposomes with (1000 fold) or without transmembrane Ca2+ gradient. The highest enzyme activity (the active center of enzyme exposing outside) was observed in the vesicles with lower Ca2+ concentration outside (approximately 10(-6) M, similar to physiological condition). If the transmembrane Ca2+ gradient was in the inverse direction (i.e. higher Ca2+ concentration outside, 1 mM), a lowest enzyme activity would appear. Such a difference could be diminished following addition of A23187. Obtained results showed that a proper transmembrane Ca2+ gradient is essential for the optimal fluidity of phospholipid bilayer, favouring the formation of suitable conformation of adenylate cyclase with higher enzyme activity.  相似文献   

13.
The biogenesis of melanosomes is a multistage process that requires the function of cell-type-specific and ubiquitously expressed proteins. OCA2, the product of the gene defective in oculocutaneous albinism type 2, is a melanosomal membrane protein with restricted expression pattern and a potential role in the trafficking of other proteins to melanosomes. The ubiquitous protein complexes AP-3, BLOC-1, and BLOC-2, which contain as subunits the products of genes defective in various types of Hermansky-Pudlak syndrome, have been likewise implicated in trafficking to melanosomes. We have tested for genetic interactions between mutant alleles causing deficiency in OCA2 (pink-eyed dilution unstable), AP-3 (pearl), BLOC-1 (pallid), and BLOC-2 (cocoa) in C57BL/6J mice. The pallid allele was epistatic to pink-eyed dilution, and the latter behaved as a semi-dominant phenotypic enhancer of cocoa and, to a lesser extent, of pearl. These observations suggest functional links between OCA2 and these three protein complexes involved in melanosome biogenesis.  相似文献   

14.
Alibardi L. 2011. Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. —Acta Zoologica (Stockholm) 92 : 187–200. The present morphological study describes the color of hatchling, juvenile, and adult crocodilian skin and the origin of its pigmentation. In situ hybridization and immunostaining indicate that crocodilian scales grow as an expansion of the proliferating epidermis of the hinge region that form thin lateral rings. In more central areas of growing scales, new epidermal layers contribute to increase the thickness of the stratum corneum. The dark pigmentation and color pattern derive from the different distribution of epidermal and dermal chromatophores. The more intensely pigmented stripes, irregular patches and dot‐like spots, especially numerous in dorsal scales, derive from the incorporation of the eumelanosomes of epidermal melanocytes in differentiating beta cells of the epidermis. Dermal melanophores, mainly localized in the loose upper part of the dermis, also contribute to the formation of the dark or gray background of crocodilian scales. The eumelanosomes of dermal melanophores determine the darkening of the skin pattern in association with the epidermal melanocytes. Iridophores are infrequent, while xantophores are present in the species analyzed with a sparse distribution in the superficial dermis among melanophores. The presence of xantophores and of the few iridophores in areas where epidermal melanocytes are absent appear to determine the brown or the light yellow‐orange background observed among the darker regions of crocodilian scales.  相似文献   

15.
Intricate interactions between the Wnt and Bmp signaling pathways pattern the gastrulating vertebrate embryo using a network of secreted protein ligands and inhibitors. While many of these proteins are expressed post-gastrula, their later roles have typically remained unclear, obscured by the effects of early perturbation. We find that Bmp signaling continues during somitogenesis in zebrafish embryos, with high activity in a small region of the mesodermal progenitor zone at the posterior end of the embryo. To test the hypothesis that Bmp inhibitors expressed just anterior to the tailbud are important to restrain Bmp signaling we produced a new zebrafish transgenic line, allowing temporal cell-autonomous activation of Bmp signaling and thereby bypassing the effects of the Bmp inhibitors. Ectopic activation of Bmp signaling during somitogenesis results in severe defects in the tailbud, including altered morphogenesis and gene expression. We show that these defects are due to non-autonomous effects on the tailbud, and present evidence that the tailbud defects are caused by alterations in Wnt signaling. We present a model in which the posteriorly expressed Bmp inhibitors function during somitogenesis to constrain Bmp signaling in the tailbud in order to allow normal expression of Wnt inhibitors in the presomitic mesoderm, which in turn constrain the levels of canonical and non-canonical Wnt signaling in the tailbud.  相似文献   

16.
17.
The E1 glycoprotein of the avian coronavirus infectious bronchitis virus contains a short, glycosylated amino-terminal domain, three membrane-spanning domains, and a long carboxy-terminal cytoplasmic domain. We show that E1 expressed from cDNA is targeted to the Golgi region, as it is in infected cells. E1 proteins with precise deletions of the first and second or the second and third membrane-spanning domains were glycosylated, thus suggesting that either the first or third transmembrane domain can function as an internal signal sequence. The mutant protein with only the first transmembrane domain accumulated intracellularly like the wild-type protein, but the mutant protein with only the third transmembrane domain was transported to the cell surface. This result suggests that information specifying accumulation in the Golgi region resides in the first transmembrane domain, and provides the first example of an intracellular membrane protein that is transported to the plasma membrane after deletion of a specific domain.  相似文献   

18.
Restricted expression of caspase‐14 in differentiating keratinocytes suggests the involvement of caspase‐14 in terminal differentiation. We purified active caspase‐14 from human cornified cells with sequential chromatographic procedures. Specific activity increased 764‐fold with a yield of 9.1%. Purified caspase‐14 revealed the highest activity on WEHD‐methylcoumaryl‐amide (MCA), although YVAD‐MCA, another caspase‐1 substrate, was poorly hydrolyzed. The purified protein was a heterodimer with 17 and 11 kDa subunits. N‐terminal and C‐terminal analyses demonstrated that the large subunit consisted of Ser6‐Asp146 and N‐terminal of small subunit was identified as Lys153. We successfully developed an antiserum (anti‐h14D146) directed against the Asp146 cleavage site, which reacted only with active caspase‐14 but not with procaspase‐14. Furthermore we confirmed that anti‐h14D146 did not show any reactivity to the active forms of other caspases. Immunohistochemical analysis demonstrated that anti‐h14D146 staining was mostly restricted to the cornified layer and co‐localized with some of the TUNEL positive‐granular cells in the normal human epidermis. UV radiation study demonstrated that caspase‐3 was activated and co‐localized with TUNEL‐positive cells in the middle layer of human epidermis. In contrast, we could not detect caspase‐14 activation in response to UV. Our study revealed tightly regulated action of caspase‐14, in which only the terminal differentiation of keratinocytes controls its activation process. J. Cell. Biochem. 109: 487–497, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
BackgroundSterols have been reported to modulate conformation and hence the function of several membrane proteins. One such group is the Chloride Intracellular Ion Channel (CLIC) family of proteins. The CLIC protein family consists of six evolutionarily conserved protein members in vertebrates. These proteins exist as both monomeric soluble proteins and as membrane bound proteins. To date, the structure of their membrane-bound form remains unknown. In addition to several studies indicating cellular redox environment and pH as facilitators of CLIC1 insertion into membranes, we have also demonstrated that the spontaneous membrane insertion of CLIC1 is regulated by membrane cholesterol.MethodWe have performed Langmuir-film, Impedance Spectroscopy and Molecular Docking Simulations to study the role of this GXXXG motif in CLIC1 interaction with cholesterol.ResultsUnlike CLIC1-wild-type protein, the G18A and G22A mutants, that form part of the GXXXG motif, showed much slower initial kinetics and lower ion channel activity compared to the native protein. This difference can be attributed to the significantly reduced membrane interaction and insertion rate of the mutant proteins and/or slower formation of the final membrane configuration of the mutant proteins once in the membrane.Conclusion: In this study, our findings uncover the identification of a GXXXG motif in CLIC1, which likely serves as the cholesterol-binding domain, that facilitates the protein's membrane interaction and insertion. Furthermore, we were able to postulate a model by which CLIC1 can autonomously insert into membranes to form functional ion channels.General significanceMembers of the CLIC family of proteins demonstrate unusual structural and dual functional properties – as ion channels and enzymes. Elucidating how the CLIC proteins' interact with membranes, thus allowing them to switch between their soluble and membrane form, will provide key information as to a mechanism of moonlighting activity and a novel regulatory role for cholesterol in such a process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号