首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A preparation of ATPase from the membranes of Micrococcus lysodeikticus, solubilized and more than 95% pure, showed two main bands in analytical polyacrylamide gel electrophoresis. They did not correspond to isoenzymes because one band could be converted into the other by exposure to a mildly alkaline pH value. The conversion was paralleled by changes in molecular weight, circular dichroism and catalytic properties. Denaturation by pH at 25 degrees C was followed by means of circular dichroism, ultracentrifugation and polyacrylamide gel electrophoresis. A large conformational transition took place in the acid range with midpoints at about pH = 3.6 (I = 10(-4) M), 4.3 (I = 0.03 M) and 5.3 (I = 0.1 M). The transition was irreversible. Strong aggregation of the protein occurred in this range of pH. The final product was largely random coil, but even at pH 1.5 dissociation into individual subunits was not complete. However, partial dissociation took place at pH 5 (I = 0.028 M). At this pH value the enzyme was inactive, but 20-30% of the activity could be recovered when the pH was returned to 7.5. In the alkaline region the midpoint of the transition occurred near pH = 11 (I = 0.028 M). The pK of most of the tyrosine residues of the protein was about 10.9. The unfolding was irreversible and the protein was soon converted into peptide species with molecular weights lower than those determined for the subunits by gel electrophoresis in the presence of sodium dodecyl sulphate. Conventional proteolysis did not account for the transformation.  相似文献   

2.
The dissociation of the extracellular hemoglobin of Tubifex tubifex at alkaline and acid pH, and its reassociation upon return to neutral pH, was investigated using gel filtration, ultracentrifugation, and polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE). Tubifex hemoglobin dissociated at pH above 8 and below 6; both dissociations appeared to be equilibrium processes. The extent of dissociation increased as the pH moved away from neutrality; although dissociation was virtually complete at pH 11, its extent at acid pH did not exceed 50–60% at pH 4. Ca(II), Mg(II), and Sr(II) cations over the range 1–100 mm decreased the extent of the dissociation only at alkaline pH. The visible absorption spectrum of the oxyhemoglobin remained unaltered in the pH range 4–9. At more extreme pH, it changed with time, altering irreversibly to that of the aquo ferri form. Gel filtration of the hemoglobin at both extremes of pH showed that it dissociated into two heme-containing fragments; one consisting of subunit 1 (Mr ~ 17,000) and the other containing subunits 2, 3, and 4 of the hemoglobin (Mr ~ 60,000). Upon return to neutral pH, the dissociated fragment reassociated to the extent of 50 to 80% to whole hemoglobin molecules. The reassociation decreased with increase in alkaline pH, and with decrease in acid pH to which the hemoglobin had been exposed; it increased in the presence of Ca(II), Sr(II), and Mg(II) only subsequent to dissociation at alkaline pH. The SDS-PAGE patterns, gel-filtration elution volumes, and α-helical contents, determined from circular dichroism at 222 nm, of the reassociated whole molecules were identical to those of the native hemoglobin.  相似文献   

3.
The association-dissociation and denaturation behaviour of the major protein fraction, alpha-globulin of sesame seed (Sesamum indicum L.), in acid and alkaline solutions in the ranges of pH 4.2-1.5 and pH 7-12 have been studied. The results of gel filtration, fluorescence and viscosity measurements indicate dissociation and denaturation of the protein up to pH approximately 3. The difference spectrum in this region arises from a combination of dissociation, denaturation and charge effect on the chromophore. In still stronger acid solution, reassociation of the dissociated fraction takes place by hydrophobic interaction. In alkaline solution dissociation takes place around pH 8, and above pH 10 dissociation and denaturation proceed simultaneously as has been evidenced by sedimentation, fluorescence, spectral change, optical rotation and viscosity measurements. The phenolic group (pKInt=10.6) in the protein is abnormal and denaturation in alkaline solution is irreversible. Above pH 11.5 further dissociation of the protein takes place. Characteristic pH values of transition from 10.6-10.8 indicate that the transition of the protein involves a single step in alkaline solution.  相似文献   

4.
An acidic lethal protein, Mojave toxin, has been isolated from the venom of Crotalus scutulatus scutulatus. The purified toxin had an i.v. LD50 of 0.056 μg/g in white mice. Disc polycrylamide gel electrophoresis at pH values of 9.6 and 3.8 and isoelectric focusing in polyacrylamide gels with a pH 3.5–10 Ampholyte gradient were used to establish the presence of one major protein band. The pI of the most abundant form of the toxin was determined to be 5.5 by polyacrylamide gel isoelectric focusing experiments. The molecular weight was established to be 24,310 daltons from amino acid composition data. Mojave toxin was shown to consist of two subunits, one acidic and one basic with isoelectric point (pI) values of 3.6 and 9.6, respectively. Amino acid analyses established molecular weights of 9593 for the acidic component and 14,673 for the basic component. The acidic subunit consisted of three peptide chains intermolecularly linked by cystine residues. The basic subunit was a single polypeptide chain with six intramolecular disulfide bonds. The basic subunit was lethal to test animals with an intravenous LD50 of 0.58 μg/g. Following recombination of the subunits a recombinant toxin was isolated which was identical to the native toxin by comparisons of electrophoretic mobility and toxicities. Comparisons of circular dichroism spectra also indicated reassociation to the native toxin structure. Phospholytic activity was associated with Mojave toxin and the basic subunit was responsible for this enzymic activity. Phospholipase activity of the basic subunit was inhibited by addition of the acidic subunit.  相似文献   

5.
The conformation of human placental alkaline phosphatase (EC 3.1.3.1) has been studied using the spectroscopic structural probes of pH difference spectroscopy, solvent perturbation difference spectroscopy, and circular dichroism. Of the 37 ± 1 tyrosine residues in placental alkaline phosphatase (PAP), 5 ± 1 residues are observed by pH difference spectroscopy to be “free” and presumed to be located on the surface of the enzyme molecule. The ionization of these 5 “free” tyrosyl groups is not time dependent and is reversible with a pKapp of 10.29. The remaining 32 ± 1 tyrosines are considered “buried” and ionization is observed to be both time dependent and irreversible. Treatment of the enzyme with 4 m guanidine-hydrochloride normalizes all 37 ± 1 tyrosine residues (pKapp = 10.08). The difference pH titration studies thus provide spectrophotometric evidence for a change in molecular conformation of PAP in the pH region of 10.5. Using solvent perturbation difference spectroscopy and circular dichroism, the local environments of tyrosine and tryptophan residues were elucidated for the native enzyme and the enzyme in the presence of ligands that influence catalytic function: inorganic phosphate (competitive inhibitor), l-phenylalanine (uncompetitive inhibitor), d-phenylalanine (noninhibitor). and Mg2+ ion (activator). The spectral observations from these studies led to the following interpretations: (i) the binding of inorganic phosphate, a competitive inhibitor, induces a conformational change in the enzyme that may alter the active site and thereby decrease enzyme catalytic function; (ii) perturbation with l-phenylalanine gives spectral results indicating a conformational change consistent with the postulate that this uncompetitive inhibitor prevents the dissociation of the phosphoryl enzyme intermediate; and (iii) Mg2+ ion causes a slight separation of the enzyme subunits, which could increase accessibility to the active site and, thus, enzyme activity.  相似文献   

6.
The physical characteristics of cAMP-dependent protein kinases and their, regulatory subunits from calf uterus, human uterus, human mammary tumor, and rat pituitary and of cAMP-binding protein from calf uterus were determined by quantitative polyacrylamide gel electrophoresis in buffers containing the detergent, Triton X-100. In the four tissues, protein kinases of either type A1, with molecular weight (Mr) = 200,000, or type B, of Mr = 80,000, or both, previously described were found. Trivial charge isomerism, or size isomerism, exists within each of the two classes, Protein Kinase A and B. The protein kinase recombined from the regulatory and catalytic subunits is not significantly different from the crude or isolated protein kinase. Protein Kinases A and B exist each in either one of the isozyme forms I and II but these are not reflected in polyacrylamide gel electrophoresis at pH 10.2. Protein Kinase B appears to be a product of the partial proteolysis of Protein Kinase A. The regulatory subunits of Protein Kinases A from the four tissues are distinct from those of Protein Kinases B. No physical distinction exists between regulatory subunits derived from isozyme forms I and II. cAMP-Binding Proteins A and B are physically indistinguishable, by polyacrylamide gel electrophoresis at pH 10.2, from the regulatory subunits of Protein Kinases A and B, respectively.  相似文献   

7.
Globular proteins such as β-lactoglobulin (BLG) are poorly accessible to enzymes. We have studied susceptibility of BLG to oxidation by Trichoderma reesei (TrTyr) and Agaricus bisporus (AbTyr) tyrosinases and subsequent intermolecular cross-linking with respect to pH-induced structural changes. We evaluated pH-induced structural changes in BLG using circular dichroism, tryptophan fluorescence and small angle X-ray scattering (SAXS) measurements, where after these results were correlated with the analysis of cross-linking by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Oxygen consumption measurement and changes in radii of gyration determined by SAXS during the enzyme-induced oxidation at the respective reaction conditions were also followed. Intermolecular cross-linking of BLG by TrTyr was found at pH 9 but not at pH 7.5. AbTyr was unable to catalyze cross-linking at pH 7.5 or pH 9. Increased accessibility and cross-linking by TrTyr was addressed to loosening of the three dimensional structure of the protein, increased flexibility of the backbone as well as partial hydrolysis. In addition to basic research of the effect of protein folding on enzymatic cross-linking the research results have significance on the exploitation of TrTyr at alkaline conditions.  相似文献   

8.
The spontaneous assembly of the earthworm erythrocruorin molecule (60 S) from its 1/12 subunits (10 S) obtained by alkaline dissociation is a long debated problem, since the 60 S to 10 S dissociation step has been regarded as essentially irreversible or as only partially reversible when freshly dissociated solutions are used. Erythrocruorin from the earthworm Octolasium complanatum has been reassembled from its 10 S subunits. "Age" of the subunits, pH, and divalent cation concentration are the factors that influence the assembly reaction. Of primary importance is the age of the subunits, i.e. their exposure time to the alkaline dissociating pH. Parallel sedimentation velocity and sodium dodecyl sulfate/polyacrylamide gel electrophoresis experiments on the dissociated and reassembled solutions indicate that two processes take place at alkaline pH values: disulfide exchange and limited proteolysis. These processes, whose relative importance differs in the various preparations, might be responsible for the loss of reassociating capacity of the 10 S subunits. With freshly dissociated subunits, reassembly up to 80% may be achieved at pH 6.2 to 6.5 in the absence of divalent cations; the presence of 25 to 50 mM-Ca2+ renders the reaction essentially pH-independent in the range 6.2 to 8. The effect of Ca2+ is discussed in the light of the presence of structure-stabilizing binding sites for divalent cations at the 10 S intersubunit's contact regions.  相似文献   

9.
M F Brown  T Schleich 《Biochemistry》1975,14(14):3069-3074
The circular dichroism of diisopropylphosphorylsubtilisins Novo and Carlsberg in both the near- and farultraviolet spectral regions is unaltered by concentrations of guanidine hydrochloride as high as 4 M at neutral pH. At concentrations of guanidine hydrochloride greater than 4 M slow irreversible time-dependent changes, apparently obeying second-order kinetics, are evident in both the near- and far-ultraviolet circular dichroism of these enzymes. Gel filtration studies of inactivated subtilisin enzymes reveal the circular dichroism changes to be accompained by the appearance of aggregated protein material. The changes in circular dichroism and the production of associated subtilisin species are sensitive to protein concentration, denaturant concentrations, and pH. The circular dichroism of active subtilisins Novo and Carlsberg in guanidine hydrochloride exhibits irreversible changes similar to those observed for the inactivated subtilisins. Aggregated protein material is also formed initially in the presence of guanidine hydrochloride, but is rapidly autolyzed to low molecular weight fragments.  相似文献   

10.
Circular dichroism of platelet factor 4   总被引:1,自引:0,他引:1  
The circular dichroism of platelet factor 4 was investigated and it was found to contain 15% alpha-helix, 25% beta-structure, and the rest of the molecule in unordered conformation. In the presence of heparin, no change in the circular dichroism was observed, suggesting no significant changes in the secondary structure of platelet factor 4 when heparin binds. The CD spectrum of platelet factor 4 was also investigated in the presence of increasing concentrations of guanidine hydrochloride. A two-state transition was observed with midpoints at 0.125 and 2.0 M guanidine hydrochloride. Based on gel filtration studies, the first unfolding transition was correlated with the dissociation of the tetrameric structure. This first unfolding domain was not observed in the presence of heparin, suggesting that heparin stabilizes the tetrameric structure. The second unfolding transition corresponds to the disruption of the overall secondary structure which is generally observed with most proteins. It is concluded that a relatively weak force of attraction holds the tetrameric structure of platelet factor 4 and the dissociation of the subunits is accompanied by loss of some helical secondary structure.  相似文献   

11.
Thermally induced transitions of the 13-subunit integral membrane protein bovine cytochrome c oxidase (CcO) have been studied by differential scanning calorimetry (DSC) and circular dichroism (CD). Thermal denaturation of dodecyl maltoside solubilized CcO proceeds in two consecutive, irreversible, kinetically driven steps with the apparent transition temperatures at ∼ 51°C and ∼ 61°C (5μM CcO at scan rate of 1.5 K/min). The thermal denaturation data were analyzed according to the Lyubarev and Kurganov model of two consecutive irreversible steps. However, because of the limitation of the model to describe the complex mechanism of the thermal denaturation of CcO, the obtained results were utilized only for comparison purposes of kinetic stabilities of CcO under specific protein concentration (5μM) and scan rate (1.5 K/min). This enabled us to show that both the amphiphilic environment and the self-association state of CcO affect its kinetic stability. Kinetic stabilities of both steps are significantly decreased when all of the phospholipids are removed from CcO by phospholipase A2 (the half-life decreases at 37°C). Conversely, dimerization of CcO induced by sodium cholate significantly increases its kinetic stability of only the first step (the half-life increases at 37°C). Protein concentration-dependent nonspecific oligomerization also indicate mild stabilization of CcO. Both, reversed-phase high-performance liquid chromatography (HPLC) and SDS-PAGE subunit analysis reveal that the first step of thermal denaturation involves dissociation of subunits III, VIa, VIb, and VIIa, whereas the second step is less well defined and most likely involves global unfold and aggregation of the remaining subunits. Electron transport activity of CcO decreases in a sigmoidal manner during the first transition and this dependence is very well described by kinetic parameters for the first step of the thermal transition. Therefore, dissociation of subunit III and/or VIIa is responsible for temperature-induced inactivation of CcO because VIa and VIb can be removed from CcO without affecting the enzyme activity. These results demonstrate an important role of tightly bound phospholipids and oligomeric state (particularly the dimeric form) of CcO for kinetic stability of the protein.  相似文献   

12.
The macromolecular structural transition of Pf1 filamentous bacterial virus detected by X-ray diffraction analysis has been studied in virus solutions by density, circular dichroism, and microcalorimetric measurements. The reversible structural change occurring between 5 °C and 25 °C has a calorimetrically determined transition enthalpy ΔHt,cal of 14·5 ± 1.5 kJ (mol protein)?1. The transition curves resulting from the density, circular dichroism, and calorimetric measurements have been analysed in terms of a two-state process to extract the van't Hoff enthalpy. Comparison of the effective transition enthalpy and the calorimetric ΔHt,cal values gives about 26 protein subunits as the size of the co-operative unit. Parallel heat capacity and density measurements on fd virus show no such transition, in agreement with X-ray diffraction studies.  相似文献   

13.
M Herold  K Kirschner 《Biochemistry》1990,29(7):1907-1913
The unfolding and dissociation of the dimeric enzyme aspartate aminotransferase (D) from Escherichia coli by guanidine hydrochloride have been investigated at equilibrium. The overall process was reversible, as judged from almost complete recovery of enzymic activity after dialysis of 0.7 mg of denatured protein/mL against buffer. Unfolding and dissociation were monitored by circular dichroism and fluorescence spectroscopy and occurred in three separate phases: D in equilibrium 2M in equilibrium 2M* in equilibrium 2U. The first transition at about 0.5 M guanidine hydrochloride coincided with loss of enzyme activity. It was displaced toward higher denaturant concentrations by the presence of either pyridoxal 5'-phosphate or pyridoxamine 5'-phosphate and toward lower denaturant concentrations by decreasing the protein concentration. Therefore, bound coenzyme stabilizes the dimeric state, and the monomer (M) is inactive because the shared active sites are destroyed by dissociation of the dimer. M was converted to M* and then to the fully unfolded monomer (U) in two subsequent transitions. M* was stable between 0.9 and 1.1 M guanidine hydrochloride and had the hydrodynamic radius, circular dichroism, and fluorescence of a monomeric, compact "molten globule" state.  相似文献   

14.
The stability of porcine brain inositol monophosphatase in the presence of increasing concentrations of urea was investigated at pH 7.5. Exposure of the enzyme to 8 M urea brings about the dissociation of the dimeric species of 58 kDa into monomeric forms as revealed by gel filtration chromatography. Unfolding of the protein by 8 M urea results in a decrease of the ellipticity at 220 nm (20%) together with a perturbation of the near-UV circular dichroism spectrum. Urea-treated inositol monophosphatase binds Co2+ ions with a dissociation constant of 3.3 M. The enzyme is catalytically competent when assayed with 4-nitrophenyl-phosphate in the presence of the activating ion Co2+ at pH 7.5 in 8 M urea. The apparent activation constant for Co2+ is 2.5 mM. It is postulated that partially folded conformations of monomeric species preserve their catalytic function because the affinity of Co2+ ions for the metal coordination center of the protein is not perturbed by exposure to 8 M urea.  相似文献   

15.
Noncovalent aggregation as a side reaction competing with the reconstitution of oligomeric enzymes is enhanced by slow conformational changes within the partially unfolded subunits. This has been shown for lactic dehydrogenase from pig muscle after acid dissociation [G., Zettlmeissl R. Rudolph, and R. Jaenicke (1981)Eur. J. Biochem.121, 169–175]. The present experiments confirm previous spectroscopic evidence (from circular dichroism) applying pepsin digestion and subsequent analysis of the fragments on sodium dodecyl sulfate-polyacrylamide gradient gels. The susceptibility of certain fragmentation sites toward pepsin digestion changes with increasing incubation at acid pH, in accordance with a slow M1 → M2 transition of the acid-dissociated monomers. Constant pulses of pepsin at varying times after transferring native enzyme to pH 2.3 yield distinct changes in the fragmentation pattern consisting of undigested monomers (Mr = 35,000) plus 12 fragments ranging from 31,000 to 5000. Short digestion of the M2 species at low concentrations of pepsin preferentially yields 25,000 and 10,500 fragments (molar ratio pepsin:lactic dehydrogenase = 1:24). The time-dependent decrease of monomers upon incubation in 0.1 m sodium phosphate, pH 2.3, at 20 °C strictly parallels the formation of the two fragments. The quantitative kinetic analysis of the changes in peptide pattern yields a first-order rate constant K1 = 8 ± 2 × 10?4 s?1. The observed increase in proteolytic susceptibility is in the time range of the above mentioned decrease in the far-ultraviolet circular dichroism, and the parallel decrease in the yield of reactivation. The results suggest that during the M1 → M2 transition at acid pH a specific interdomain cleavage site is becoming exposed. As taken from the molecular weight of the two main fragments the trp 225-lys 226 peptide bond is the most probable candidate for this cleavage site.  相似文献   

16.
J.M. Andreu  E. Muñoz 《BBA》1975,387(2):228-233
Micrococcus lysodeikticus ATPase was purified by preparative gel electrophoresis after its “shock wash” release from the membrane. The method afforded the highest yield of pure protein in the minimum time as compared with former purification procedures. The pure protein had a specific activity of 7 μmol Pi·min?1·mg?1 with incubation times not longer than 3 min, 345 000 mol. wt and was not stimulated by trypsin. By gel electrophoresis at alkaline pH (8.5) in 8 M urea or in sodium dodecylsulfate, the ATPase revealed a complex pattern with two major subunits (α and β) and two minor ones (γ and δ). The non-identity between the major subunits was demonstrated.  相似文献   

17.
The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 × 106 Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (Dh) of 27 ± 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller Dh of 10 ± 1 nm. The decrease in Dh suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DLS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25°C and 38°C. At 25°C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38°C is faster than that at 25°C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25°C. Autoxidation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.  相似文献   

18.
The acidic and basic subunits of glycinin—the major storage protein of soybean seeds (Glycine max)—were isolated by a simple ion exchange chromatography method involving a two-step pH change of the elution buffer. Abnormal behaviour of the subunits in dodecyl sulfate polyacrylamide gel electrophoresis is suggested.  相似文献   

19.
An unspecific carboxylesterase was purified 180-fold from acid-precipitated human liver microsomes. The final preparation was homogeneous on disc electrophoresis and polyacrylamide gel electrophoresis in the presence of 6.25 M urea at pH 3.2. A single symmetrical peak was also found on gel filtration and on velocity sedimentation in the analytical ultracentrifuge, whereas slight heterogeneity was observed on isoelectric focusing.The amino acid composition of the purified enzyme is presented. From the results the partial specific volume (0.745 ml × g?1) and the minimal molecular weight (60,000) could be calculated. Fingerprint maps of tryptic peptides from the carboxymethylated enzyme are shown.The molecular weight as determined by gel filtration, disc electrophoresis, and analytical ultracentrifugation is in the range of 181,000–186,000. For the molecular weight of the subunits a value of 61,500 has been obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The equivalent weight of the enzyme has been estimated to be 62,500 from stoichiometry of its reaction with diethyl-p-nitrophenyl-phosphate. Partial cross-linking of the subunits with dimethyl suberimidate and subsequent sodium dodecylsulfate polyacrylamide gel electrophoresis yielded three bands with molecular weights of 60,000, 120,000, and 180,000.From these results it is concluded that human liver esterase is a trimeric protein. It is composed of three subunits of equal size, and there is one active site per subunit.  相似文献   

20.
天然态蛋白质能否在溶液中存在多种构象是一个有争议的问题 . 在前报道中已经鉴定出绿脓杆菌去辅基天青蛋白突变体 M121L 可以多种构象共存 . 用差热扫描量热和圆二色性的方法研究了野生型去辅基天青蛋白的热变性 . 结果表明在 pH 从 4.0 到 9.0 的范围内存在着两个摩尔热容最大值 . 较低温度下的去折叠反应在所研究 pH 范围内均部分可逆,而较高温度下的去折叠反应均不可逆 . 蛋白质去折叠的热容变化双峰用可相互转化的两种构象共存模型进行拟合 . 较低温度下能够去折叠的构象在 pH 4.0 时占 64% ,在 pH 9.0 时占 55%. 监测热变性过程中圆二色谱在 219 nm 处的信号变化也可以观测到两个独立的去折叠变化 . 信号变化的比值与在相同条件下差热扫描法测得的两种构象摩尔比一致 . 上述结果进一步支持了前文提出的去辅基天青蛋白在溶液中至少存在着两种构象的设想 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号