首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meier T  Dimroth P 《EMBO reports》2002,3(11):1094-1098
The oligomeric c-rings of Na+-translocating F1F0 ATP synthases exhibit unusual stability, resisting even boiling in SDS. Here, we show that the molecular basis for this remarkable property is intersubunit crossbridging by Na+ or Li+ ions. The heat stability of c11 was dependent on the presence of Na+ or Li+ ions. For equal stability, 10 times higher Li+ than Na+ concentrations were required, reflecting the 10 times lower binding affinity for Li+ than for Na+. In a recent structural model of c11, the Na+ or Li+ binding ligands are located on neighboring c-subunits, which thus become crossbridged by the binding of either alkali ion with a concomitant increase in the stability of the ring. Site-directed mutagenesis strengthens the essential role of glutamate 65 in the crossbridging of the subunits and also corroborates the proposed stabilizing effect of an ion bridge including aspartate 2.  相似文献   

2.
Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.  相似文献   

3.
Salt sensitivity in wheat : a case for specific ion toxicity   总被引:7,自引:0,他引:7       下载免费PDF全文
Two selected lines of bread wheat, Triticum aestivum L., differing in their relative salt resistance, were grown in isosmotic solutions of different ionic compositions to investigate sensitivity to specific ions. Growth rates and ion accumulation were determined. The salt composition of the various solutions had little effect on the growth of the salt-resistant line, but significantly affected that of the salt-sensitive line. Specifically, solutions containing high Na+ concentrations were more toxic than those containing high Cl concentrations or high concentrations of nutrient ions. There were few differences in ion accumulation between lines in a given treatment, although the sensitive line tended to accumulate more Na+ than the tolerant line in the salt treatments with high Na+ concentrations. The overall results provide evidence that there is a definite specific ion effect which is related to salt sensitivity in wheat. It is suggested that superior compartmentation of toxic ions, principally Na+, may be a mechanism of salt resistance in this case.  相似文献   

4.
To investigate Na+ binding to the ion-binding sites presented on the cytoplasmic side of the Na,K-ATPase, equilibrium Na+-titration experiments were performed using two fluorescent dyes, RH421 and FITC, to detect protein-specific actions. Fluorescence changes upon addition of Na+ in the presence of various Mg2+ concentrations were similar and could be fitted with a Hill function. The half-saturating concentrations and Hill coefficients determined were almost identical. As RH421 responds to binding of a Na+ ion to the third neutral site whereas FITC monitors conformational changes in the ATP-binding site or its environment, this result implies that electrogenic binding of the third Na+ ion is the trigger for a structural rearrangement of the ATP-binding moiety. This enables enzyme phosphorylation, which is accompanied by a fast occlusion of the Na+ ions and followed by the conformational transition E1/E2 of the protein. The coordinated action both at the ion and the nucleotide binding sites allows for the first time a detailed formulation of the mechanism of enzyme phosphorylation that occurs only when three Na+ ions are bound. Received: 8 October 1998/Revised: 29 December 1998  相似文献   

5.
6.
Wei  Wenxue  Bilsborrow  Paul E.  Hooley  Paul  Fincham  Daron A.  Lombi  Enzo  Forster  Brian P. 《Plant and Soil》2003,250(2):183-191
Dry matter changes and ion partitioning in two near isogenic barley cultivars Maythorpe (relatively salt sensitive) and Golden Promise (relatively salt tolerant) were studied in response to increasing salinity. Although the growth of both cultivars was significantly reduced by exposure to NaCl, the effect was greater in Maythorpe, whilst Golden Promise maintained an increased ratio of young to old leaf blade. Golden Promise maintained significantly lower Na+ concentrations in young expanding tissues compared with Maythorpe. Partitioning of Cl was evident in that both varieties maintained lower Cl concentrations in mesophyll than in epidermal cells. Golden Promise maintained higher K+/Na+ and Ca2+/Na+ ratios in young leaf blade and young sheath tissues than Maythorpe when exposed to salt. Differences in ion partitioning and the maintenance of higher K+ and Ca2+ to Na+ ratios, especially in young growing and recently expanded tissues, would appear to be important mechanisms contributing to the improved salt tolerance of Golden Promise.  相似文献   

7.
Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non‐invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na+ loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na+ concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K+/Na+ ratios and efficiently sequester the accumulated Na+ in leaves. The former is achieved by more efficient loading of K+ into the xylem. We argue that the observed increases in xylem K+ and Na+ concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K+‐permeable voltage‐sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K+/Na+ ratio in the xylem sap.  相似文献   

8.
Four selected NaCl-tolerant cell lines of Sour orange (Citrus aurantium) were compared with the nonselected cell line in their growth and internal ion content of Na+, K+, and Cl when exposed to increasing NaCl concentrations. No difference was found among the various NaCl-tolerant cell lines in Na+ and Cl uptake, and all these cell lines took up similar or even larger amounts of Na+ and Cl than the NaCl-sensitive cell line. Exposure of cells of NaCl-sensitive and NaCl-tolerant lines to equal external concentrations of NaCl, resulted in a greater loss of K+ from the NaCl-sensitive cell line. This observation leads to the conclusion that growth and ability to retain high levels of internal K+ are correlated. Exposure of the NaCl-tolerant cell lines to salts other than NaCl resulted in even greater tolerance to Na2SO4, but rather poor tolerance to K+ introduced as either K2SO4 or KCl; the latter has a stronger inhibitory effect. The NaCl-sensitive cell line proved to be more sensitive to replacement of Na+ by K+. Analyses of internal Na+, K+, and Cl concentrations failed to identify any particular internal ion concentration which could serve as a reliable marker for salt tolerance.  相似文献   

9.
Abstract. Slightly vacuolated cells, i.e. microalgae and meristematic cells of vascular plants, maintain low Cl? and Na+ concentrations even when exposed to a highly saline environment. The factors regulating the internal ion concentration are the relative rate of volume expansion, the membrane permeability to ions, the electrical potential, and the active ion fluxes. For ion species which are not actively transported, a formula is developed which relates the internal concentration to the rate of expansion of cell volume, the permeability of membranes to that ion, and the electrical potential. For example, when the external concentration of Cl? is high, and Cl? influx is probably mainly passive, the formula predicts that rapid growth keeps the internal Cl? concentration lower than that in a non-growing cell with the same electrical potential; this effect is substantial if the plasmalemma has a low permeability to Cl?. For ion species which are actively transported, the rate of pumping must be considered. For instance Na+ concentrations are kept low mainly by an efficient Na+ extrusion pump which works against the electric field across the membrane. The requirement for Na+ extrusion is related to the external Na+ concentration, the rate of expansion of cell volume, the membrane permeability, and the electrical potential. It is possible that microalgae have a more positive electrical potential than many other plant cells; if so, requirements for high rates of active Na+ extrusion will be lower. The required rates of Na+ extrusion are lower during rapid growth, provided that the permeability of the plasmalemma to Na+ is low. The energy required for the regulation of Cl? and Na+ concentrations is low, especially in rapidly expanding cells where Na+ extrusion requires only 1–2% of the energy normally produced in respiration. The exclusion of these ions, however, must be accompanied by the synthesis of enough organic compounds to provide adequate osmotic solutes for the increases in volume accompanying growth. This process reduces the substrates available for respiration and synthesis of cell constituents, but the reduction is not prohibitively large—even for cells growing in 750 mol m?3 NaCl, the carbohydrate accumulated as osmotic solute is only 10% of that consumed in respiration.  相似文献   

10.
彭云玲  保杰  叶龙山  王永健  燕利斌 《生态学报》2014,34(24):7320-7328
盐胁迫影响植物组织的离子分布,不同品种间存在差异。以玉米耐盐自交系81162和8723及盐敏感自交系P138为材料,研究了不同浓度(0、60、140、220 mmol/L)Na Cl胁迫下萌动期种子和幼苗的不同部位中Na+、K+、Ca2+含量以及K+/Na+和Ca2+/Na+比值的变化,旨在探讨不同自交系耐盐性差异的原因。结果表明,在萌动种子中,3个玉米自交系中的Na+积累量表现为种皮胚胚乳,K+累积表现为胚种皮胚乳;幼苗中,Na+积累表现为根茎叶。随着Na Cl浓度的增加,3个玉米自交系萌动种子和幼苗中的Na+含量逐渐升高,但是萌动种子中耐盐自交系81162和8723的Na+增加幅度小于盐敏感自交系P138,Na+含量小于盐敏感自交系P138;幼苗中耐盐自交系81162和8723的Na+增加幅度大于盐敏感自交系P138,幼苗根中Na+含量大于盐敏感自交系P138;茎叶中的Na+含量小于盐敏感自交系P138。随着Na Cl浓度的增加,萌动种子和幼苗中的K+和Ca2+含量逐渐降低。K+离子在耐盐自交系81162和8723萌动种子和幼苗中的降低幅度小于盐敏感自交系P138;Ca2+离子在耐盐自交系81162和8723幼苗中的降低幅度小于盐敏感自交系P138;而在萌动种子中3个自交系Ca2+的流失差异不大。耐盐自交系81162和8723萌动种子和幼苗中K+含量都大于盐敏感自交系P138。耐盐自交系81162和8723的萌动种子和幼苗根中Ca2+含量都大于盐敏感自交系P138;幼苗叶片中则小于盐敏感自交系P138。萌动种子和幼苗中K+/Na+和Ca2+/Na+均随着Na Cl浓度的升高而降低,K+/Na+比值表现为耐盐自交系81162和8723大于盐敏感自交系P138。耐盐自交系81162和8723通过调节离子平衡维持萌动种子和幼苗中较高的K+/Na+比值从而提高耐盐性。  相似文献   

11.
Intracellular concentrations of Na+ and K+ of various normal, transformed, and tumor cell cultures were analyzed by atomic absorption spectrophotometry. In all of the cultures analyzed there were markedly different concentrations in the transformed and tumor cells when compared to their normal counterparts. Although increased Na+ was often observed, there were no definitive correlations between absolute ion concentrations, or Na+:K+ ratios, and cell transformation.  相似文献   

12.
Ion channels of the degenerin/epithelial Na+ channel gene family are Na+ channels that are blocked by the diuretic amiloride and are implicated in several human diseases. The brain liver intestine Na+ channel (BLINaC) is an ion channel of the degenerin/epithelial Na+ channel gene family with unknown function. In rodents, it is expressed mainly in brain, liver, and intestine, and to a lesser extent in kidney and lung. Expression of rat BLINaC (rBLINaC) in Xenopus oocytes leads to small unselective currents that are only weakly sensitive to amiloride. Here, we show that rBLINaC is inhibited by micromolar concentrations of extracellular Ca2+. Removal of Ca2+ leads to robust currents and increases Na+ selectivity of the ion pore. Strikingly, the species ortholog from mouse (mBLINaC) has an almost 250-fold lower Ca2+ affinity than rBLINaC, rendering mBLINaC constitutively active at physiological concentrations of extracellular Ca2+. In addition, mBLINaC is more selective for Na+ and has a 700-fold higher amiloride affinity than rBLINaC. We show that a single amino acid in the extracellular domain determines these profound species differences. Collectively, our results suggest that rBLINaC is opened by an unknown ligand whereas mBLINaC is a constitutively open epithelial Na+ channel.  相似文献   

13.
The uptake of Na+ and the loss of Ca2+ and K+ by seeds of Acacia tortilis (Forsk.) Hayne (salt tolerant) and A. coriacea DC. (salt sensitive) were determined after 24 h soaking in 250 mol m-1,3 NaCl or in distilled water. Na+ uptake was higher by the seed coat than by the embryo of both species and higher by A. coriacea than by A. tortilis. The greater Na+ uptake by A. coriacea was associated with greater Ca and K+ leakage. The Na+ concentration of solution imbibed by the embryo of both species was lower than the Na+ concentration in the external solution, indicating an exclusion of Na+. When A. tortilis and A. coriacea seeds were treated with a series of NaCl concentration (0–400 mol m-1,3), the exclusion mechanism was particularly clear with A. tortilis at lower concentrations (50 and 150 mol m-1,3) of NaCl. In contrast, the seed coat of both species accumulated Na+. Thus the seed coat may play an important role in ion exchange. These results show that it is important to consider the seed coat and embryo separately rather than the whole seed when considering ion exchange in relation to salinity tolerance.  相似文献   

14.
Isolated small intestinal epithelial cells were prepared by using either (a) hyperosmolar, low sodium, high potassium containing (intracellular-like) solutions, or (b) isoosmolar, high sodium, low potassium containing (extracellular-like) solutions. Both (a) and (b) cells show high viability as estimated by Trypan blue exclusion, oxygen consumption, cellular ATP content, lactate-dehydrogenase liberation, intracellular ion concentrations and significant Na+-dependent alanine and uridine uptakes. Although (a) and (b) cells show in the cold similar ion concentration, after reincubation at 37° C for 30 min (a) cells show intracellular ion concentrations of 31 mM Na, 129 mM K and 88 mM Cl, whilst (b) cells have 71 mM Na, 93 mM K and 102 mM Cl. Cells prepared with (a) concentrate much more alanine and uridine than cells prepared with (b), probably because the latter have a lower Na+ gradient across the plasma membrane. Cells prepared with intracellular-like solutions would be an ideal system to study Na+-dependent transport mechanisms and the regulatory systems of intracellular ion concentrations.  相似文献   

15.
The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family.  相似文献   

16.
K. Raschke  P. Dittrich 《Planta》1977,135(1):69-75
Following small hypo-osmotic shocks, ion concentrations (Na+, K+, Cl-) in Platymonas subcordiformis decreased; this was due mainly to an increase of cell volume. With larger hypo-osmotic stresses, the decrease of ion concentration continued and, additionally, extrusion of mannitol was observed. The ion and mannitol concentrations were not regained after 240 min. In contrast, following hyperosmotic shocks, the ion concentrations increased transitorily during the first 20–40 min. The same was true for K+ following small hyperosmotic stresses and for Na+ and — partially — Cl- with larger shocks. Large hyperosmotic stresses caused permanent accumulation of mannitol, which levelled off after 60–80 min. Thus the transient increase of ions bridged the concentration gap until mannitol was accumulated to a high enough concentration to account for the osmotic adaptation of Platymonas, together with a basal level of the ions K+, Na+, Cl-.Abbreviations PS photosynthesis - Resp respiration  相似文献   

17.
Cultured human neuroblastoma cell lines were tested for the action potential sodium ionophore utilizing the Li+ ion rather than the 22Na+ ion. The cell lines studied included CHP-134, CHP-100, CHP-126, CHP-212 and LA-N-1. Veratridine-dependent uptake of Li+ and 22Na+ and its inhibition by tetrodotoxin implies the presence of the action-potential sodium ionophore. CHP-165, and undifferentiated tumor and RAJI a lymphoblast had no veratridine-dependent Li+ uptake. Thus, veratridine-dependent Li+ uptake provides a convenient means of assaying human neural cells for the action-potential sodium ionophore without the use of the radioactive Na+ ion.  相似文献   

18.
Background Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na+ and Cl) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na+ and/or Cl in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K+ (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations.Scope This review discusses the evidence for Na+ and Cl toxicity and the concept of tissue tolerance in relation to halophytes.Conclusions The data reviewed here suggest that halophytes tolerate cytoplasmic Na+ and Cl concentrations of 100–200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability.  相似文献   

19.
The effects of NaCl and mannitol iso-osmotic stresses on calli issued from sugarcane cultivars (cvs.) R570, CP59-73 and NCo310 were investigated in relation to callus growth, water content, ion and proline concentrations. Callus growth and water content decreased under both stresses with the highest reduction under mannitol-induced osmotic stress. The ion concentration was drastically affected after exposure to NaCl and mannitol. Salt stress induced an increase in Na+ and Cl accumulation and a decrease in K+ and Ca2+ concentrations. Under mannitol-induced osmotic stress, K+ and Ca2+ concentrations decreased significantly while Na+ and Cl concentrations remained unchanged. Free proline accumulation occurred under both stresses and was more marked in stress-sensitive cv. than in stress-resistant one. Our results indicated that the physiological mechanisms operating at the plant cell level in response to salt- and osmotic-induced stress in sugarcane cvs. are different. Among the cvs., we concluded that the stress resistance is closely related to the maintain of an adequate water status and a high level of K+ and Ca2+ under both stresses and a low level of Na+ concentration in the presence of NaCl. Thus, sugarcane (Saccharum sp.) can be regarded as a Na+ excluder. We also provided evidence that proline accumulation is a stress-sensitive trait rather than a stress resistance marker.  相似文献   

20.
The Na+ and K+ content of non-metabolizing yeast cells was determined before and after monochromatic ultraviolet (UV) irradiation. UV facilitated the uptake of Na+ into and the loss of K+ from the cells (net ion flux); the effect is greatest for the shortest wavelength employed (239 mµ) and is partly dependent upon the presence of oxygen. The UV effect on net ion flux persists for at least 90 minutes during which tests were made and it occurs following dosages which are without measurable effect on colony formation. The UV effect on net ion flux is decreased by acidity and promoted by alkalinity. Addition of calcium ions in sufficient amount prevents the usual net ion flux changes observed in irradiated yeast. Increase in concentration gradient between the inside and the outside of the cell increases the net ion flux of irradiated yeast, Na+ uptake leading K+ loss in all cases. UV appears to act by disorganizing the constituents of the cell surface, permitting K+ to leave the cell in exchange for Na+. At low intensities of UV this ionic exchange approaches equivalence, but at higher intensities more Na+ is taken up than K+ is lost. Some evidence suggests that the Na+ in excess over that exchanged for K+ is adsorbed to charged groups produced by the photochemical effect of UV on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号