首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three homodimeric creatine kinase isozymes (A2, B2, and C2) of the green sunfish (Lepomis cyanellus) were purified by a combination of affinity chromatography, gel filtration, and preparative starch gel electrophoresis. The final preparations were isozymically pure and were used to elicit antibodies in rabbits. The use of the group-specific adsorbant Blue Sepharose CL-6B (Pharmacia) and specific elution conditions for creatine kinase facilitated purification. Fish creatine kinase isozymes are sensitive to denaturation and cannot be readily purified by procedures routinely used for mammalian creatine kinase isozymes.  相似文献   

2.
Binding of creatine kinase and the 165,000 molecular weight component to the M-band of rabbit skeletal muscle and bovine cardiac muscle, following their removal by low ionic strength extraction, has been accomplished. Examination of the myofibrils in the electron microscope shows that creatine kinase and the 165,000 Mr component will bind to the M-band independently of each other. In the skeletal system, rabbit skeletal creatine kinase and the 165,000 Mr protein were used, while in the bovine cardiac case, bovine cardiac creatine kinase and rabbit skeletal 165,000 Mr protein were employed. The latter conditions gave results that suggest the presence of a bovine analogue of Mr = 165,000 in the M-band of bovine cardiac myofibrils. The fact that bovine creatine kinase will bind to the M-band firmly establishes its presence, for the first time, as an integral part of the M-band structure of mammalian cardiac muscle.  相似文献   

3.
We aimed to investigate the role of betaine supplementation on muscle phosphorylcreatine (PCr) content and strength performance in untrained subjects. Additionally, we compared the ergogenic and physiological responses to betaine versus creatine supplementation. Finally, we also tested the possible additive effects of creatine and betaine supplementation. This was a double-blind, randomized, placebo-controlled study. Subjects were assigned to receive betaine (BET; 2?g/day), creatine (CR; 20?g/day), betaine plus creatine (BET?+?CR; 2?+?20?g/day, respectively) or placebo (PL). At baseline and after 10?days of supplementation, we assessed muscle strength and power, muscle PCr content, and body composition. The CR and BET?+?CR groups presented greater increase in muscle PCr content than PL (p?=?0.004 and p?=?0.006, respectively). PCr content was comparable between BET versus PL (p?=?0.78) and CR versus BET?+?CR (p?=?0.99). CR and BET?+?CR presented greater muscle power output than PL in the squat exercise following supplementation (p?=?0.003 and p?=?0.041, respectively). Similarly, bench press average power was significantly greater for the CR-supplemented groups. CR and BET?+?CR groups also showed significant pre- to post-test increase in 1-RM squat and bench press (CR: p?=?0.027 and p?<?0.0001; BET?+?CR: p?=?0.03 and p?<?0.0001 for upper- and lower-body assessments, respectively) No significant differences for 1-RM strength and power were observed between BET versus PL and CR versus BET?+?CR. Body composition did not differ between the groups. In conclusion, we reported that betaine supplementation does not augment muscle PCr content. Furthermore, we showed that betaine supplementation combined or not with creatine supplementation does not affect strength and power performance in untrained subjects.  相似文献   

4.
1. Purified ficin was chemically attached to CM-cellulose, and partially purified ATP–creatine phosphotransferase was chemically attached to both CM-cellulose and p-aminobenzylcellulose. 2. The apparent Km with respect to ATP and Mg2+ of ATP–creatine phosphotransferase was observed to increase about tenfold on attachment of the enzyme to CM-cellulose, and to increase by only 23% on its attachment to p-aminobenzylcellulose. 3. The reactivity of both ficin and ATP–creatine phosphotransferase with 5,5′-dithiobis-(2-nitrobenzoic acid) was observed to decrease on chemical attachment of these enzymes to water-insoluble derivatives of cellulose. With derivatives prepared from CM-cellulose, the extent of the reaction with 5,5′-dithiobis-(2-nitrobenzoic acid) was dependent on ionic strength, but with similar derivatives prepared from p-aminobenzylcellulose the extent of this reaction was independent of ionic strength. 4. The effect of diffusion and electrostatic interaction of charged enzyme substrates and charged enzyme supports on the apparent Km of a water-insoluble derivative of an enzyme is discussed. An equation is derived that satisfactorily describes the observed effects of these factors on the apparent Km.  相似文献   

5.
A synthesis of racemic trans-2-imino-1,3-diazabicyclo[3.3.0]octane-8-carboxylic acid in six steps from the known compound 2-benzylcarbamyl-5-carbethoxypyrrolidine is described. The compound, which is a bicylic analog of creatine, was shown to be neither a substrate nor an inhibitor of creatine kinase.  相似文献   

6.
Bong SM  Moon JH  Nam KH  Lee KS  Chi YM  Hwang KY 《FEBS letters》2008,582(28):3959-3965
Creatine kinase is a member of the phosphagen kinase family, which catalyzes the reversible phosphoryl transfer reaction that occurs between ATP and creatine to produce ADP and phosphocreatine. Here, three structural aspects of human-brain-type-creatine-kinase (hBB-CK) were identified by X-ray crystallography: the ligand-free-form at 2.2 Å; the ADP-Mg2+, nitrate, and creatine complex (transition-state-analogue complex; TSAC); and the ADP-Mg2+-complex at 2.0 Å. The structures of ligand-bound hBB-CK revealed two different monomeric states in a single homodimer. One monomer is a closed form, either bound to TSAC or the ADP-Mg2+-complex, and the second monomer is an unliganded open form. These structural studies provide a detailed mechanism indicating that the binding of ADP-Mg2+ alone may trigger conformational changes in hBB-CK that were not observed with muscle-type-CK.  相似文献   

7.
Creatine kinase (E.C. 2.7.3.2) was examined in stellate sturgeon Acipenser stellatus Pallas, Russian sturgeon A. gueldenstaedtii Brandt, European sterlet A. ruthenus L., Siberian sterlet A. ruthenus marsiglii Brandt, and great sturgeon (beluga) Huso huso L., using polyacrylamide gel electrophoresis. Two loci for creatine kinase were identified: CK-A* in white skeletal muscle and CK-C* in stomach wall muscle. Most species proved to be monomorphic at the CK-A* locus, showing the same phenotype represented by a single band. Heterogeneity and polymorphism in creatine kinase, determined by the CK-A* locus, were found only in Russian sturgeon. Based on the results of densitometric analysis of band staining intensity, we have advanced a hypothesis that synthesis of subunits of the CK-A* product in this species was controlled by eight genes. However, the genotype frequencies in the sample were significantly different from those theoretically expected upon free and independent gene recombination. The results of this study support the hypothesis on the absence of heterodimeric creatine kinase molecules in the skeletal muscle of Russian sturgeon. Locus CK-C* in stellate sturgeon was revealed as a single, intensely stained, rapidly migrating fraction, whereas in Russian sturgeon, the enzyme activity in this zone was very weak. No creatine kinase was found in liver, kidneys, spleen, heart, and intestine mucous tunic.  相似文献   

8.

[Purpose]

The purpose of the study was to investigate the relationship between CK variability and body composition and muscle damage markers following eccentric exercise.

[Methods]

Total 119 healthy male subjects were recruited to perform 50 eccentric contractions consisted of 2 sets of 25 contractions. Then, blood creatine kinase (CK) activity was analyzed to divide into three groups based on their CK activity levels. Maximum isometric strength (MIS), muscle soreness (SOR) and body composition data were obtained before and after exercise.

[Results]

The results showed that high CK responders had a significant decrease in MIS (p<0.001) and greater SOR (p<0.01) following eccentric exercise compared to low CK responders. Percent body fat was also higher in high responders compared to low responders (p=0.014). Peak CK activity was significantly correlated with MIS and SOR but no correlation with % body fat, muscle mass, and body mass index.

[Conclusion]

CK variability following eccentric exercise is closely related to MIS and SOR and % body fat may be a potent factor for CK variability.  相似文献   

9.
Rabbit heart mitochondria were used as a source of enzymes for the synthesis of phosphoruslabeled creatine phosphate. This method is based on the coupled reaction between mitochondrial oxidative phosphorylation and mitochondrial-bound creatine kinase. It is possible to convert more than 90% of the inorganic phosphate (Pi) to creatine phosphate. The method used only small amounts of adenine nucleotides which led to a product with only slight nucleotide contamination. This could be removed by activated charcoal extraction. For further purification, a method for the removal of residual Pi is described.  相似文献   

10.
Rikke Birkedal  Hans Gesser 《BBA》2006,1757(7):764-772
In mammalian cardiomyocytes, mitochondria and adjacent ATPases with participation of creatine kinase (CK) constitute functional compartments with an exchange of ADP and ATP delimited from cytosolic bulk solution. The question arises if this extends to ectothermic vertebrates: their low body temperature and thinner cardiomyocytes with a lower density of membrane structures may reduce the need and structural basis for compartmentation. In saponin-skinned cardiac fibres from rainbow trout and Atlantic cod, we investigated mitochondrial respiration induced by endogenous ADP generated by ATPases and its competition for this ADP with pyruvate kinase (PK) in excess. At low Ca2+ activity (pCa = 7.0), PK lowered ATP-induced respiration by 40% in trout and 26% in cod. At high Ca2+ activity (pCa = 5.41), PK had no effect. Additionally, ADP release from the fibres was almost zero but increased drastically upon inhibition of respiration with 1 mM Na-azide. This suggests that fibres are compartmented. PK abolished creatine-stimulated respiration in trout suggesting a less tight coupling of CK to respiration than in mammals. In conclusion, intracellular compartmentation seems to be a general feature of vertebrate cardiomyocytes, whereas the role of CK is unclear, but it seems to be less important for energy transport in species with lower metabolism.  相似文献   

11.
Barrett J. 1973. Nucleoside triphosphate metabolism in muscle tissue of Ascaris lumbricoides (Nematoda). International Journal for Parasitology3: 393–400. Nucleosidediphosphate kinase and adenylate kinase were found to be extremely active in Ascaris muscle. Apart from adenylate kinase, no other nucleosidemonophosphate kinases could be detected. There was no measurable AMP deaminase activity or arginine or creatine phosphokinase activity in Ascaris muscle. Analysis of perchlorate extracts of freeze clamped Ascaris muscle revealed no arginine or creatine phosphate and negligible amounts of acid labile phosphate. Adenosine tri-, di- and monophosphates were the major nucleotides, constituting 93 per cent of the total, with only small amounts of inosine and guanosine di- and triphosphates being detected. The significance of these results in the energy metabolism of Ascaris muscle is discussed.  相似文献   

12.
The utilization of isocratic, reverse-phase, ion-paired high-performance liquid chromatography for analysis of creatine phosphate allows for rapid quantification of multiple samples. Cryogenic sample handling and the addition of ethylene glycol bis(β-aminoethyl ether) N,N′-tetraacetic acid as a Ca2+ sequestering agent during perchloric acid extraction enhance maximal recovery of creatine phosphate from brain samples. Peak identification is supported by a complete enzymatic shift with a phosphocreatine kinase, hexokinase, and glucose-6-phosphate dehydrogenase system.  相似文献   

13.
31P-NMR spectra of bullfrog stomach smooth muscle showed peaks for creatine phosphate (4.8 μmol·g−1 wet wt.), ATP (3.6), inorganic phosphate (Pi, 2.4), phosphomonoesters (3.0) and phosphodiesters (3.3). The intracellular pH was 7.3, and calculated from the chemical shift of Pi. 1H-NMR spectra of smooth muscle yielded peaks of 2.9 for lactate, 6.6 for total creatine (creatine phosphate + creatine) and methyl protons of choline tentatively assigned to glycerolphosphorylcholine or to membrane phospholipids. Creatine phosphate and ATP decreased under anaerobic conditions, and intracellular acidification was observed with the concomitant increase in lactate. 31P saturation transfer studies showed that saturation of the γ-ATP resonance reduced the intensity of creatine phosphate to 60% of its control value, and the measured T1 value of creatine phosphate was 2.4 s with saturation. The calculated forward flux of the creatine kinase reaction (decomposition direction of creatine phosphate) was 0.77 μmol·g−1 wet wt.·s−1. The creatine kinase flux was approx. 100-times larger than the ATP turnover rate, calculated from the oxygen consumption rate with the assumption, P/O = 3. In conclusion, the creatine kinase reaction is at equilibrium in resting smooth muscle of bullfrog stomach.  相似文献   

14.
The presence or absence of five proteins (glycogen phosphorylase, aldolase A, aldolase C, creatine kinase M, creatine kinase B) in the various classes of cells found in primary cultures derived from embryonic chick breast muscle was investigated using cytological staining methods. Histochemical staining for phosphorylase and indirect fluorescent antibody staining for aldolase A and C as well as for creatine kinases M and B showed the following: All five proteins were found in the many myotubes present in standard medium cultures and in the very few myotubes found in cultures containing 5-bromodeoxyuridine (10?5M). The elongated bipolar cells prevented from fusing in medium containing EGTA also contain all five proteins. The flattened myogenic cells that predominate in the 5-bromodeoxyuridine-treated cultures contain no phosphorylase or creatine kinase M, though many of them contain creatine kinase B and aldolases A and C. These results are interpreted as indicating that: (1) phosphorylase and creatine kinase M, but not aldolase A, are suitable all-or-none markers for terminal muscle differentiation; (2) the small amounts of creatine kinase M detected in electrophoreses of 5-bromodeoxyruridine-treated cultures can be accounted for by the few myotubes present and are not due to “protodifferentiation” of large numbers of cells; (3) proteins typical of differentiated muscle are produced only in cells that have passed through the last step in myogenesis that is susceptible to 5-bromodeoxyuridine inhibition, and (4) if fusion is blocked by reducing the concentration of calcium ions, accumulation of characteristic muscle proteins can continue in those cells that have initiated terminal differentiation.  相似文献   

15.
The characterization of blood metabolite concentrations over the circadian period and across physiological stages is important for understanding the biological basis of feed efficiency, and may culminate in indirect methods for assessing feed efficiency. Hematological analyses for albumin, urea, creatine kinase, glutamate dehydrogenase, aspartate aminotransferase, carbon dioxide, and acetate were carried out in growing and gestating heifers. These measures were carried out in a sample of 36 Bos taurus crossed beef heifers held under the same husbandry conditions. Hourly blood samples were collected over a 24-h period on three separate sampling occasions, corresponding approximately to the yearling (and open), early-gestation and late-gestation stages. This design was used to determine variation throughout the day, effects due to physiological status and any associations with feed efficiency, as measured by residual feed intake. Blood analyte levels varied with time of day, with the most variation occurring between 0800 and 1600 h. There were also considerable differences in analyte levels across the three physiological stages; for example, creatine kinase was higher (P<0.05) in open heifers, followed by early- and late-gestation heifers. Feed efficiency was also associated with analyte abundance. In more feed-efficient open heifers, there were higher activities of creatine kinase (P<0.05) and aspartate aminotransferase (P<0.05), and lower concentrations of carbon dioxide (P<0.05). Furthermore, in late gestation, more efficient heifers had lower urea concentrations (P<0.05) and lower creatine kinase levels (P<0.05). Over the whole experimental period, carbon dioxide concentrations were numerically lower in more feed efficient heifers (P=0.079). Differences were also observed across physiological stages. For instance, open heifers had increased levels (P<0.05) of creatine kinase, aspartate aminotransferase, carbon dioxide than early and late pregnancy heifers. In essence, this study revealed relevant information about the metabolic profile in the context of feed efficiency and physiological stages. Further optimization of our approach, along with the evaluation of complementary analytes, will aid in the development of robust, indirect assessments of feed efficiency.  相似文献   

16.
The kinetics of phosphoryl exchange involving ATP and ADP have been investigated successfully by in vivo 31P magnetic resonance spectroscopy using magnetization transfer. However, magnetization transfer effects seen on the signals of ATP also could arise from intramolecular cross-relaxation. This relaxation process carries information on the association state of ATP in the cell. To disentangle contributions of chemical exchange and cross-relaxation to magnetization transfer effects seen in 31P magnetic resonance spectroscopy of skeletal muscle, we performed saturation transfer experiments on wild type and double-mutant mice lacking the cytosolic muscle creatine kinase and adenylate kinase isoforms. We find that cross-relaxation, observed as nuclear Overhauser effects (NOEs), is responsible for magnetization transfer between ATP phosphates both in wild type and in mutant mice. Analysis of 31P relaxation properties identifies these effects as transferred NOEs, i.e. underlying this process is an exchange between free cellular ATP and ATP bound to slowly rotating macromolecules. This explains the β-ATP signal decrease upon saturation of the γ-ATP resonance. Although this usually is attributed to β-ADP ↔ β-ATP phosphoryl exchange, we did not detect an effect of this exchange on the β-ATP signal as expected for free [ADP], derived from the creatine kinase equilibrium reaction. This indicates that in resting muscle, conditions prevail that prevent saturation of β-ADP spins and puts into question the derivation of free [ADP] from the creatine kinase equilibrium. We present a model, matching the experimental result, for ADP ↔ ATP exchange, in which ADP is only transiently present in the cytosol.  相似文献   

17.
为探讨人体进行最大等速离心运动(ECC)诱发血液肌酸激酶(CK)水平变化、血清肌酸激酶水平与肌肉损伤(EIMD)的关系,本研究筛选出150名"缺乏运动"的健康大学生为受试者,进行血样采集,进行前测包括血清肌酸激酶(CK)、最大等长肌力(MVC)、肘关节活动角度(ROM)、上臂围(CIR)、肌肉感受(VAS)。受试者进行5组×12次最大等速离心运动,运动后恢复期,将全部受试者血清肌酸激酶值进行排序:血清肌酸激酶值最高和最低20%样本,高肌酸激酶水平组(HCK组)和低肌酸激酶水平组(low LCK组),利用SPSS18.0统计学软件,以方差分析和多元回归分析进行统计分析。本研究发现全部受试者、高肌酸激酶水平组、低肌酸激酶水平组在最大等速离心运动后各评估指标均显著高于比前测结果,p<0.05。全部受试者、高肌酸激酶水平组受试者在最大等速离心运动后各指标变化皆明显大于低肌酸激酶水平组受试者,p<0.05。受试者血清肌酸激酶峰值与最大等长肌力、肘关节活动角度、上臂围、肌肉感受最大变化值有相关,p<0.05。本研究认为肌肉损伤程度与肌酸激酶水平具有显著相关,尤其高血清肌酸激酶水平者肌酸激酶水平较大程度反映肌肉损伤程度趋势。本研究表明,肘关节活动角度、上臂围具有预测肌酸激酶峰值的效果。  相似文献   

18.
Phosphocreatine production catalyzed by a cytosolic fraction from cardiac muscle containing all glycolytic enzymes and creatine kinase in a soluble form has been studied in the presence of creatine, adenine nucleotides and different glycolytic intermediates as substrates. Glycolytic depletion of glucose, fructose 1,6-bis(phosphate) and phosphoenolpyruvate to lactate was coupled to efficient phosphocreatine production. The molar ratio of phosphocreatine to lactate produced was close to 2.0 when fructose 1,6-bis(phosphate) was used as substrate and 1.0 with phosphoenolpyruvate. In these processes the creatine kinase reaction was not the rate-limiting step: the mass action ratio of the creatine kinase reaction was very close to its equilibrium value and the maximal rate of the forward creatine kinase reaction exceeded that of glycolytic flux by about 6-fold when fructose 1,6-bis(phosphate) was used as a substrate. Therefore, the creatine kinase raction was continuously in the state of quasiequilibrium and the efficient synthesis of phosphocreatine observed is a result of constant removal of ADP by the glycolytic system at an almost unchanged level of ATP ([ATP] ? [ADP]), this leading to a continuous shift of the creatine kinase equilibrium position.When phosphocreatine was added initially at concentrations of 5–15 mM the rate of the coupled creatine kinase and glycolytic reactions was very significantly inhibited due to a sharp decrease in the steady-state concentration of ADP. Therefore, under conditions of effective phosphocreatine production in heart mitochondria, which maintain a high phosphocreatine: creatine ratio in the myoplasm in vivo, the glycolytic flux may be suppressed due to limited availability of ADP restricted by the creatine kinase system. The possible physiological role of the control of the glycolytic flux by the creatine kinase system is discussed.  相似文献   

19.
Bacteriophage XP-12-infected Xanthomonas oryzae have been found to be a source of a kinase preparation which converts m5dCMP to m5dCDP and then to m5dCTP using ATP as the phosphate donor. Optimal formation of the triphosphate required the presence of creatine phosphate and creatine kinase. In the presence of dGTP, dTTP and dATP, Escherichia coli DNA polymerase I and T4 DNA polymerase catalyzed the incorporation of m5dCTP into DNA just as efficiently as that of dCTP. Neither dTMP nor dCMP served as substrate for the m5dCMP monophosphate kinase. Analogous preparations from uninfected X. oryzae were unable to phosphorylate m5dCMP.  相似文献   

20.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号