首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of CC-1065 to poly- and oligonucleotides   总被引:3,自引:0,他引:3  
The binding of the antitumor agent CC-1065 to a variety of poly- and oligonucleotides was studied by electronic absorption, CD, and resistance to removal by Sephadex column chromatography. Competitive binding experiments between CC-1065 and netropsin were carried out with calf-thymus DNA, poly(dI-dC) · poly(dI-dC), poly(dI) · poly(dC), poly(rA) · poly(dT), poly(dA- dC) · poly(dG-dT), and poly(dA) · 2poly(dT). CC-1065 binds to polynucleotides by three mechanisms. In the first, CC-1065 binds only weakly, as judged by the induction of zero or very weak CD spectra and low resistance to extraction of drug from the polynucleotide by Sephadex chromatography. In the second and third mechanisms, CC-1065 binds strongly, as judged by the induction of two distinct, intense CD spectra and high resistance to extraction of drug from the polynucleotide, by Sephadex chromatography in both cases. The species bound by the second mechanism converts to that bound by the third mechanism with varying kinetics, which depend both on the base-pair sequence and composition of the polynucleotide. Competitive binding experiments with netropsin show that CC-1065 binds strongly in the minor groove of DNA by the second and third mechanisms of binding. Netropsin can displace CC-1065 that is bound by the second mechanism but not that bound by the third mechanism. CC-1065 binds preferentially to B-form duplex DNA and weakly (by the first binding mechanism) or not at all to RNA, DNA, and RNA–DNA polynucleotides which adopt the A-form conformation or to single-strand DNA. This correlation of strong binding of CC-1065 to B-form duplex DNA is consistent with x-ray data, which suggest an anomalous structure for poly(dI) · poly(rC), as compared with poly(rI) · poly(dC) (A-form) and poly(dI) · poly(dC) (B-form). The binding data indicate that poly(rA) · poly(dU) takes the B-form secondary structure like poly(rA) · poly(dT). Triple-stranded poly(dA) · 2poly(dT) and poly(dA) · 2poly(dU), which are considered to adopt the A-form conformation, bind CC-1065 strongly. Netropsin, which also shows a binding preference for B-form polynucleotides, also binds to poly(dA) · 2poly(dT) and occupies the same binding site as CC-1065. These binding studies are consistent with results of x-ray studies, which suggest that A-form triplex DNA retains some structural features of B-form DNA that are not present in A-form duplex DNA; i.e., the axial rise per nucleotide and the base tilt. Triple-stranded poly(dA) · 2poly(rU) does not bind CC-1065 strongly but has nearly the same conformation as poly(dA) · 2poly(dT) based on x-ray analysis. This suggests that the 2′-OH group of the poly(rU) strands interferes with CC-1065 binding to this polynucleotide. The same type of interference may occur for other RNA and DNA–RNA polynucleotides that bind CC-1065 weakly.  相似文献   

2.
Design and synthesis of peptides capable of specific binding to DNA   总被引:1,自引:0,他引:1  
In the present communication, design, synthesis and DNA binding activities of the following two peptides are reported: Dns-Gly-Ala-Gln-Lys-Leu-Ala-Cly-Lys-Val-Gly-Thr-Lys-Val-Lys-Val-Gl y-Thr-Lys-Thr - Val-OH (I) and [(H-Ala-Lys-Leu-Ala-Thr-Lys-Ala-Gly-Val-Lys-Gln-Gln-Ser-Ile-Gln-Leu-Ile- Thr- Ala-Aca-Lys-Aca)2Lys-Aca]2Lys-Val-OH (II), where Aca = NH(CH2)5CO--; Dns is a residue of 5-dimethylaminonaphtalene-1-sulfonic acid. Peptide I contains a large fraction (ca.30%) of valyl and threonyl residues, which possess a high potential for beta structure formation. Peptide II contains four repeats of the amino acid sequence present in the presumed DNA binding helix-turn-helix unit of 434 Cro repressor. These four domains are linked in such a way that two domains can interact with two halves a 14 base pair long operator site on DNA. From CD studies we have found that peptide I is in a random coil conformation in the aqueous solution in the presence of 20% trifluoroethanol. By contrast, amino acid residues of peptide II assume alpha helical, beta and random coiled conformations under the same conditions. A change in the secondary structure of the two peptides upon binding to DNA is observed. The difference CD spectra obtained by subtracting the spectra of free DNA from the spectra of peptide I--DNA complexes gives rise to a beta-like pattern. The difference CD spectra obtained for complexes of peptide II with various natural and synthetic DNAs suggest that alpha-beta-transition takes place in the presumed helix-turn-helix repeat units of peptide II upon binding to DNA. Peptide I binds more strongly to poly(dG).poly(dC) than to poly(dA).poly(dT) and poly[d(GC)].poly[d(GC)]. The binding takes place in the minor DNA groove because minor groove binding antibiotic sibiromycin can displace peptide I from a complex with poly(dG).poly(dC). Analysis of footprinting diagramms shows that peptide I specifically protects phosphodiester bonds within operator sites OR1 and OR2 of phage lambda from nuclease cleavage. By contrast, peptide II does not react specifically with operators OR1, OR2 and OR3 of phage 434 although it forms very tight complexes with DNA which are stable in the presence of 1M NH4F.  相似文献   

3.
Abstract

In the present work, we employed UV-VIS spectroscopy, fluorescence methods, and circular dichroism spectroscopy (CD) to study the interaction of dye Hoechst 33258, Hoechst 33342, and their derivatives to poly[d(AT)]·poly[d(AT)], poly(dA)·poly(dT), and DNA dodecamer with the sequence 5′-CGTATATATACG-3′. We identified three types of complexes formed by Hoechst 33258, Hoechst 33342, and methylproamine with DNA, corresponding to the binding of each drug in monomer, dimer, and tetramer forms. In a dimer complex, two dye molecules are sandwiched in the same place of the minor DNA groove. Our data show that Hoechst 33258, Hoechst 33342, and methylproamine also form complexes of the third type that reflects binding of dye associates (probably tetramers) to DNA. Substitution of a hydrogen atom in the ortho position of the phenyl ring by a methyl group has a little effect on binding of monomers to DNA. However it reduces strength of binding of tetramers to DNA. In contrast, a Hoechst derivative containing the ortho-isopropyl group in the phenyl ring exhibits a low affinity to poly(dA)·poly(dT) and poly[d(AT)]·poly[d(AT)] and binds to DNA only in the monomer form. This can be attributed to a sterical hindrance caused by the ortho-isopropyl group for side-by-side accommodation of two dye molecules in the minor groove. Our experiments show that mode of binding of Hoechst 33258 derivatives and their affinity for DNA depend on substituents in the ortho position of the phenyl ring of the dye molecule. A statistical mechanical treatment of binding of Hoechst 33258 and its derivatives to a polynucleotide lattice is described and used for determination of binding parameters of Hoechst 33258 and its derivatives to poly[d(AT)]·poly[d(AT)] and poly(dA)·poly(dT).  相似文献   

4.
Yang WS  Kim JW  Lee JH  Choi BS  Joe CO 《FEBS letters》1999,449(1):33-35
The ability of poly(ADP-ribose)polymerase to bind damaged DNA was assessed by electrophoretic mobility shift assay. DNA binding domain of poly(ADP-ribose)polymerase (PARPDBD) binds to synthetic deoxyribonucleotide duplex 10-mer. However, the synthetic deoxyribonucleotide duplex containing cys-syn thymidine dimer which produces the unwinding of DNA helix structure lost its affinity to PARPDBD. It was shown that the binding of PARPDBD to the synthetic deoxyribonucleotide duplex was not affected by O6-Me-dG which causes only minor distortion of DNA helix structure. This study suggests that the stabilized DNA helix structure is important for poly(ADP-ribose)polymerase binding to DNA breaks, which are known to stimulate catalytic activity of poly(ADP-ribose)polymerase.  相似文献   

5.
The binding of the antitumor agents SN-16814 nd SN-13232 to various DNA's in solution was monitored by CD and UV absorption measurements. In addition comparative studies with dA.dT containing duplex DNA of the related ligands SN-6136 and SN-6324 were included with respect to effects of structural variations. In general all four ligands show a dA.dT preference in their binding affinity to DNA. Differences were observed for the reaction of SN-16814 which contains bicyclic ring system: it has a lower base pair selectivity, shows some affinity to poly(dG-dC).poly(dG-dC), poly(rA).poly(rU) and poly(rU). The binding mechanism of SN-16814 is associated with a significant time dependent binding effect in CD spectra and UV absorption in case of reaction with poly(dA).poly(dT) and poly(dI).poly(dC) indicating a slow kinetics. The preferred binding to dA.dT base pairs in DNA decreases in the order from SN-61367 greater than SN-13232 greater than SN-6324,SN-16814 as judged from CD titration studies, salt dissociation and melting temperature data. Competitive binding experiments with netropsin (Nt) or distamycin-5 revealed that SN-16814 and SN-13232 are displaced from poly(dA.dT).poly(dA-dT) suggesting that both ligands are less strongly bound than Nt and Dst-5 within the minor groove of B-DNA. These studies are consistent with results of the DNAse I cleavage of poly(dA-dT).poly(dA-dT) which show the same relative order of inhibition of the cleavage reaction due to ligand binding. The results suggest that the variability of the DNA binding and dA.dT sequence specificity may reside in the adaptability of benzamide-type ligands in the helical groove which is influenced by distinct structural modifications of the ligand conformation.  相似文献   

6.
The interaction of berberine chloride with poly(A) and tRNA has been studied by various spectroscopic techniques. Binding parameters determined from spectrophotometric and spectrofluorimetric measurements by Scatchard analysis indicate a very high effective binding capacity of berberine to poly(A) as compared to DNA or tRNA. The circular dichroism studies show that binding of berberine to poly(A) causes a significant change in the circular dichroic spectrum of poly(A) itself, as manifested by (i) a decrease of both positive and negative bands and (ii) appearance of a conservative type of extrinsic circular dichroic spectrum in the wavelength range of 300-400 nm, while it does not cause any significant alteration to the A form structure of tRNA. It is concluded that berberine interacts stronger with poly(A) than DNA or tRNA. The results are interpreted in terms of its reported biological activities.  相似文献   

7.
Parazoanthoxanthin A is a fluorescent yellow nitrogenous pigment of the group of zoanthoxanthins, which show a broad range of biological activity. These include, among others, the ability to bind to DNA. In this study we have used a variety of spectroscopic (intrinsic fluorescence emission and UV-spectroscopy) and hydrodynamic techniques (viscometry) to characterize in more detail the binding of parazoanthoxanthin A to a variety of natural and synthetic DNA duplexes in different buffer conditions. Our results reveal the following five significant features: (i) Parazoanthoxanthin A exhibits two modes of DNA binding: One binding mode exhibits properties of intercalation, while the second binding mode is predominantly electrostatic in origin. (ii) The apparent binding "site size" for parazoanthoxanthin A near physiological salt concentration (100 mM NaCl) is in the range of 7 +/- 1 base pairs for natural genomic DNA duplexes (calf thymus and salmon testes DNA) and alternating synthetic polynucleotides (poly[d(AT)]. poly[d(AT)] and poly[d(GC)]. poly[d(GC)]). A slightly larger apparent binding site size of 9 +/- 1 bp was obtained for parazoanthoxanthin A binding to the synthetic homopolymer poly[d(A)]. poly[d(T)]. (iii) Near physiological salt concentration (100 mM NaCl) parazoanthoxanthin A binds with the same approximate binding affinity of 2-5 x 10(5) M(-1) to all DNA polymers studied. (iv) At low salt concentration, parazoanthoxanthin A preferentially binds alternating poly[d(AT)]. poly[d(AT)] and poly[d(GC)]. poly[d(GC)] host duplexes. (v) Parazoanthoxanthin A inhibits DNA polymerase in vitro.  相似文献   

8.
Propidium iodide is used as a structural probe for alternating and non-alternating DNA polymers containing guanine and the results are compared to experiments with poly[d(A-T)2], poly(dA . dT) and random DNA sequences. Viscometric titrations indicate that propidium binds to all polymers and to DNA by intercalation. The binding constant and binding site size are quite similar for all alternating polymers, non-alternating polymers containing guanine and natural DNA. Poly(dA . dT) is unusual with a lower binding constant and positive cooperativity in its propidium binding isotherms. Poly(dA . dT) and poly(dG . dC) have similar salt effects but quite different temperature effects in propidium binding equilibria. Polymers and natural DNA have similar rate constants in their SDS driven dissociation reactions. The association rate constants are similar for the alternating polymers and poly(dG . dC) but are significantly reduced for poly(dA . dT). These results suggest that natural DNA, the alternating polymers, and non-alternating polymers containing guanine convert to an intercalated conformation with bound propidium in a very similar manner.  相似文献   

9.
10.
D E Graves  T R Krugh 《Biochemistry》1983,22(16):3941-3947
Phase partition techniques have been used to measure the binding of the antitumor drugs adriamycin (NSC-123127) and daunorubicin (NSC-82151) to various DNAs. These methods provide reliable equilibrium binding data at the low levels of drug binding that may be expected in vivo. Both adriamycin and daunorubicin exhibit positive cooperativity (and/or allosterism) in their equilibrium binding to DNA as indicated by the positive slope in the initial region of the binding isotherms (Scatchard plots) under conditions simulating physiological ionic strengths. The cooperative binding (i.e., the appearance of initial positive curvature in the binding isotherms) is dependent upon the ionic strength, which suggests a role for DNA flexibility in the cooperative binding process. An analysis of the slope of the initial portion of the binding isotherms for the interaction of adriamycin with synthetic deoxypolynucleotides shows that the degree of cooperative binding decreases in the order poly(dGdT) X poly(dAdC) greater than or equal to poly(dAdT) X poly(dAdT) greater than poly(dGdC) X poly(dGdC). Marky and Breslauer [Marky, L.A., & Breslauer, K. J. (1982) Biopolymers 21, 2185-2194] found that the average base stacking enthalpies of these synthetic poly-nucleotides were in the same order, which also suggests that the properties of the DNA influence the cooperative binding (and/or allosteric effects). Adriamycin binds with a higher degree of cooperativity than daunorubicin (0.1 M NaCl); although this correlates with the effectiveness of the drugs as antitumor agents, the exact relationship between the observation of cooperative binding and pharmacological activity is yet to be determined.  相似文献   

11.
The putative NTPase/helicase protein from severe acute respiratory syndrome coronavirus (SARS-CoV) is postulated to play a number of crucial roles in the viral life cycle, making it an attractive target for anti-SARS therapy. We have cloned, expressed, and purified this protein as an N-terminal hexahistidine fusion in Escherichia coli and have characterized its helicase and NTPase activities. The enzyme unwinds double-stranded DNA, dependent on the presence of a 5' single-stranded overhang, indicating a 5'o 3' polarity of activity, a distinct characteristic of coronaviridae helicases. We provide the first quantitative analysis of the polynucleic acid binding and NTPase activities of a Nidovirus helicase, using a high throughput phosphate release assay that will be readily adaptable to the future testing of helicase inhibitors. All eight common NTPs and dNTPs were hydrolyzed by the SARS helicase in a magnesium-dependent reaction, stimulated by the presence of either single-stranded DNA or RNA. The enzyme exhibited a preference for ATP, dATP, and dCTP over the other NTP/dNTP substrates. Homopolynucleotides significantly stimulated the ATPase activity (15-25-fold) with the notable exception of poly(G) and poly(dG), which were non-stimulatory. We found a large variation in the apparent strength of binding of different homopolynucleotides, with dT24 binding over 10 times more strongly than dA24 as observed by the apparent Km.  相似文献   

12.
The regulatory roles fulfilled by polyamines by governance of chromatin structure are made possible by their strong association with cellular DNA, and hence by their ability to modulate DNA structure and function. Towards this end, it is crucial to understand the manifestation of sequence-dependent polyamine binding at the secondary and tertiary structural levels of DNA. This study utilizes circular dichroism (CD) and isothermal titration calorimetry (ITC) to address this relationship by using 20bp oligonucleotides with sequences-poly(dA):poly(dT), poly(dAdT):poly(dAdT), poly(dG):poly(dC), poly(dGdC):poly(dGdC)-that yield physiologically relevant structures, and poly(dIdC):poly(dIdC). CD studies show that at physiological ionic strength (150mM NaCl), spermine preferentially stabilizes A-tracts, and increases flexibility of the G-tract oligomer; the latter is also suggested by the larger change in entropy (DeltaS) of spermine binding to G-tracts. Given the chromatin destabilizing property of these sequences, these findings suggest a role for spermine in stabilization of non-nucleosomal A-tracts, and a compensating mechanism for incorporation of G-tracts in the chromatin structure. Other implications of these findings in sequence dependent DNA packaging are discussed.  相似文献   

13.
The binding of ciprofloxacin to natural and synthetic polymeric DNAs was investigated at different solvent conditions using a combination of spectroscopic and hydrodynamic techniques. In 10 mM cacodylate buffer (pH 7.0) containing 108.6 mM Na(+), no sequence preferences in the interaction of ciprofloxacin with DNA was detected, while in 2 mM cacodylate buffer (pH 7.0) containing only 1.7 mM Na(+), a significant binding of ciprofloxacin to natural and synthetic linear double-stranded DNA was observed. At low ionic strength of solution, ciprofloxacin binding to DNA duplex containing alternating AT base pairs is accompanied by the largest enhancement in thermal stability (e.g. DeltaT(m) approximately 10 degrees C for poly[d(AT)].poly[d(AT)]), and the most pronounced red shift in the position of the maximum of the fluorescence emission spectrum (lambda(max)). Similar red shift in the position of lambda(max) is also observed for ciprofloxacin binding to dodecameric duplex containing five successive alternating AT base pairs in the row. On the other hand, ciprofloxacin binding to poly[d(GC)].poly[d(GC)], calf thymus DNA and dodecameric duplex containing a mixed sequence is accompanied by the largest fluorescence intensity quenching. Addition of NaCl does not completely displace ciprofloxacin bound to DNA, indicating the binding is not entirely electrostatic in origin. The intrinsic viscosity data suggest some degree of ciprofloxacin intercalation into duplex.  相似文献   

14.
The interaction of the protoberberine alkaloid palmatine with single and double stranded structures of poly(A) was studied by various biophysical techniques. Comparative binding studies were also performed with double stranded DNA, t-RNA, poly(C)·poly(G), poly(U) and poly(C). The results of competition dialysis, fluorescence, and absorption spectral studies converge to reveal the molecular aspects of the strong and specific binding of palmatine to single stranded poly(A). The binding affinity of palmatine to natural DNA, t-RNA and double stranded poly(A) was weaker while no binding was apparent with single stranded poly(U), poly(C) and double stranded poly(C)·poly(G). The strong affinity of the alkaloid to single stranded poly(A) in comparison to the double stranded structure was also revealed from circular dichroic and viscometric studies. The effect of [Na+] ion concentration on the binding process revealed the significant role of electrostatic forces in the complexation. The presence of bound alkaloid also remarkably affected denaturation–renaturation of stacked helical poly(A). The energetics of the strong binding to poly(A) was studied from thermodynamic estimation from van Hoff’ analysis of the temperature dependent binding constants and ultra sensitive isothermal titration calorimertry, both suggesting the binding to be exothermic and enthalpy driven. This study provides detailed insight into the binding specificity of the natural alkaloid to single stranded poly(A) over several other single and double stranded nucleic acid structures suggesting its potential as a lead compound for RNA based drug targeting.  相似文献   

15.
The binding of quinolones, nalidixic acid (Nal), oxolinic acid (Oxo) with double stranded polynucleotides was undertaken by using UV-melting, UV-Vis absorption, fluorescence and CD spectroscopic techniques. The binding of Nal or Oxo to the polynucleotides under low-salt buffer conditions were determined for poly (dA).(dT), poly [d(A-T)], poly (dG).(dC), poly [d(G-C)] and E. coli DNA. The fluorescence data were analyzed using a previously established two step mechanism with two different DNA-Drug complexes [Rajeswari et al., Biochemistry 26, 6825-31 (1987)]. The first complex [DN](1) with a binding constant K(1), is formed where the interactions are 'nonspecific' and complex [DN](2) with a binding constant K(2), is formed where the interactions are "specific" which involve (additional) hydrophobic type of interactions like 'stacking' of the drug and the overall association constant is represented as K(=K(1)K(2)). The order of binding for Nal and Oxo is: poly [d(G-C)] > poly [d(A- T)] > E. coli > poly (dG).(dC) > poly (dA).(dT). Interaction of quinolones seems to be preferential in the alternating G, C or A, T stretches of DNA than those of non-alternating. Within any alternating or non-alternating in DNA sequences the G, C rich sequences have distinctly greater binding than A, T sequences. The overall association constant data (K) reveal higher binding of Oxo to DNA compared to Nal to any given polynucleotide investigated; which also explains the higher antibacterial potency of Oxo. Changes in the absorption difference spectra and in circular dichroic spectra also manifest these results. As the melting temperatures of the polynucleotides were only marginally raised in presence of the quinolone, we rule out the possibility of 'classical intercalation' of the drug. Amino group of guanine facilitates the binding of quinolones and therefore has the greater binding with the DNA. However, poly (dG).(dC) is known to exist in 'A' conformation which is not adopted by quinolones as in the case of poly (dA).(dT). Present results suggest that Nal or Oxo bind to DNA in a non-classical fashion which is partially stacking in nature.  相似文献   

16.
The interactions between 20 drugs and a variety of synthetic DNA polymers and natural DNAs were studied by electric linear dichroism (ELD). All compounds tested, including several clinically used antitumour agents, are thought to exert their biological activities mainly by virtue of their abilities to bind to DNA. The selected drugs include intercalating agents with fused and unfused aromatic structures and several groove binders. To examine the role of base composition and base sequence in the binding of these drugs to DNA, ELD experiments were carried out with natural DNAs of widely differing base composition as well as with polynucleotides containing defined alternating and non-alternating repeating sequences, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT),poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC). Among intercalating agents, actinomycin D was found to be by far the most GC-selective. GC selectivity was also observed with an amsacrine-4-carboxamide derivative and to a lesser extent with methylene blue. In contrast, the binding of amsacrine and 9-aminoacridine was practically unaffected by varying the GC content of the DNAs. Ethidium bromide, proflavine, mitoxantrone, daunomycin and an ellipticine derivative were found to bind best to alternating purine-pyrimidine sequences regardless of their nature. ELD measurements provided evidence for non-specific intercalation of amiloride. A significant AT selectivity was observed with hycanthone and lucanthone. The triphenyl methane dye methyl green was found to exhibit positive and negative dichroism signals at AT and GC sites, respectively, showing that the mode of binding of a drug can change markedly with the DNA base composition. Among minor groove binders, the N-methylpyrrole carboxamide-containing antibiotics netropsin and distamycin bound to DNA with very pronounced AT specificity, as expected. More interestingly the dye Hoechst 33258, berenil and a thiazole-containing lexitropsin elicited negative reduced dichroism in the presence of GC-rich DNA which is totally inconsistent with a groove binding process. We postulate that these three drugs share with the trypanocide 4',6-diamidino-2-phenylindole (DAPI) the property of intercalating at GC-rich sites and binding to the minor groove of DNA at other sites. Replacement of guanines by inosines (i.e., removal of the protruding exocyclic C-2 amino group of guanine) restored minor groove binding of DAPI, Hoechst 33258 and berenil. Thus there are several cases where the mode of binding to DNA is directly dependent on the base composition of the polymer. Consequently the ELD technique appears uniquely valuable as a means of investigating the possibility of sequence-dependent recognition of DNA by drugs.  相似文献   

17.
M Sarker  F M Chen 《Biochemistry》1989,28(16):6651-6657
Comparative DNA equilibrium binding studies with mithramycin (MTR) and ethidium bromide in the presence and in the absence of second drugs were investigated by spectral titrations. Unusual curvatures (in contrast to those due to neighbor exclusion or anticooperativity) are found in the Scatchard plots of MTR-DNA titrations in the presence of netropsin, a minor-groove binder. Parallel studies with ethidium bromide indicate that although the presence of netropsin significantly reduces the binding ability of ethidium, no unusually curved Scatchard plots are obtained. The unusual curvature exhibited by the Scatchard plots of MTR titrations in the presence of netropsin indicates that the binding of netropsin greatly affects the MTR binding to DNA and can be simulated by an explicit incorporation of the second drug-DNA interaction in the binding formalism. Since netropsin is a minor-groove binder, its interference with the binding of MTR is in accord with the notion that MTR also binds at this groove. The observation of negligible effects on the DNA binding ability of MTR in the presence of either a major-groove or a phosphate group binder lends further support to this conclusion. Consistent with its guanine specificity, studies with synthetic polynucleotides suggest that MTR exhibits negligible affinity for poly(dA-dT).poly(dA-dT) or poly(dA).poly(dT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The equilibrium binding of the antitumor compound DHAQ, or mitoxantrone [1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10- anthracenedione], to various DNAs has been examined by optical titration and equilibrium dialysis methods. At low r (bound drug/DNA base pair) values, r less than 0.03, DHAQ binds, in a highly cooperative manner, to calf thymus and Micrococcus lysodeikticus DNAs. The binding isotherms for the interaction of DHAQ with Clostridium perfringens DNA and poly(dA-dT).poly(dA-dT) exhibit a small positive slope at low r values, suggestive of cooperative binding. In contrast, the binding of DHAQ to poly(dG-dC).poly(dG-dC) shows no evidence of cooperative binding even at very low r values. At higher r values (r greater than 0.05), the binding of DHAQ to all the DNAs studied is characterized by a neighbor-exclusion process. A model is proposed to account for the two modes of binding exhibited in the cooperative binding isotherms. The main feature of the proposed model is that local sequence and structural heterogeneity of the DNA give rise to sets of binding sites to which DHAQ binds in a highly cooperative manner, while the majority of the DNA sites bind DHAQ via a neighbor-exclusion process. This two-site model reproduces the observed binding isotherms and leads to the conclusion that DHAQ binds in clusters to selected regions of DNA. It is suggested that clustering may play a role in the physiological activity of drugs.  相似文献   

19.
A monoclonal antibody (Jel 318) was produced by immunizing mice with poly[d(TmC)].poly[d(GA)].poly[d(mCT) which forms a stable triplex at neutral pH. Jel 318 did not bind to calf thymus DNA or other non pyrimidine.purine DNAs such as poly[d(TG)].poly[d(CA)]. In addition the antibody did not recognize pyrimidine.purine DNAs containing mA (e.g. poly[d(TC)].poly[d(GmA)]) which cannot form a triplex since the methyl group blocks Hoogsteen base-pairing. The binding of Jel 318 to chromosomes was assessed by immunofluorescent microscopy of mouse myeloma cells which had been fixed in methanol/acetic acid. An antibody specific for duplex DNA (Jel 239) served as a control. The fluorescence due to Jel 318 was much weaker than that of Jel 239 but binding to metaphase chromosomes and interphase nuclei was observed. The staining by Jel 318 was unaffected by addition of E. coli DNA but it was obliterated in the presence of triplex. Since an acid pH favours triplex formation, nuclei were also prepared from mouse melanoma cells by fixation in cold acetone. Again Jel 318 showed weak but consistent staining of the nuclei. Therefore it seems likely that triplexes are an inherent feature of the structure of eucaryotic DNA.  相似文献   

20.
R Bittman  L Blau 《Biochemistry》1975,14(10):2138-2145
Stopped-flow kinetic studies of the association of actinomycins with narural and synthetic DNA duplexes are presented. The actinomycins examined were D (C1), D lactam (in which the pentapeptide rings are closed by lactam instead of lactone linkages), X2, XObeta, and actinomine. The DNAs used included claf-thymus DNA, PM2, DNA, and two synthetic d(A-T)-lide copolymers containing 2,6-diaminopurine (DAP) in place of adenine residues, poly[d(DAP-T)]-poly[d(DAP-T)] and poly[d(DAP-A-T]-poly[d(DAP-A-T)]. Apparent equilibrium constants indicate that the DAP-containing polynucleotides bind actinomycin strongly. Comples formation of actinomycins D, D lactam, X2 and XObeta with these DNAs can be deconvoluted into five rate processes. These steps do not necessarily proceed to completion. The rates of two of these steps display a firstorder dependence on DNA concentration. The large negative entropies of activation of these steps suggest a high degree of restriction to freedom of motion on the respective transition states. The rates of the remaining three steps are independent of DNA concentration. Kinetic parameters of actinimycin binding to DNAs are presented and suggestions are made about some of the molecular evente believed to be responsible for the appearance of the five rate processes. For example, for DNA, poly[d(DAP-A-T)], and poly[d(DAP-T)], the observed order of apparent second-order rate constants, normalized to the concentration of actinomycin binding sites, suggests that binding of the antibiotic occurs most rapidly at binding sites (G-C of d DAT-T) near d(A-T) base pairs, where weakening of the double-helical conformation requires the least energy. Results obtained from studies of actinomycin D binding to heat-denatured poly[d(DAP-A-T)] and of actinomine and actinomycin D lactam binding to DNA suggest that the slow rate processes are related to an actinomycyl-pentapeptide-induced unwinding of the sugar-phosphate backbone of DNA accompanying insertion of the cyclic peptides into DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号