首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory pertaining to the interpretation of partition chromatography results obtained with self-associating protein systems studied at high total concentrations is extended to permit consideration of situations in which both monomeric and dimeric states partition. This development, which includes considerations of thermodynamic nonideality effects, permits a quantitative correlation of human oxyhemoglobin results reported previously and obtained in this work employing a different stationary matrix of controlled-pore glass beads. The two sets of results, obtained at pH 7.3 and 20°C- indicate that the α2β2 species of oxyhemoglobin self-associates. Two types of association pattern, discrete dimerization and an indefinite self-association, are examined. This is done for a realistic range of values for the radius, r, of the effective hard sphere appropriate to the calculation of the covolume of the α2β2 species in the assessment of the thermodynamic nonideality contribution. Assessed values of the isodesmic association constant range from 66 = 23 M ?1(r = 2.84 nm) to 154 = 26 M?1' (r = 3.13 nm). This mode of indefinite association is marginally favored over a dimerization when the larger value of r is considered, the two patterns becoming virtually indistinguishable for the lower value of r. Partition chromatography results are also presented for human deoxyhemoglobin up to a total concentration of 225 gI, and are analyzed in a similar fashion to show that the indefinite self-association pattern is favored, governed by an isodesmic constant in the range 91 = 9 M?1(r = 2.84 nm) to 223 = 84 M?1 (r = 3.13 nm). Comparison of the constants assessed for the oxy and deoxy systems permits discussion of the concept that oxygen binds preferentially to the α2β2 species of deoxyhemoglobin in comparison with its polymers.  相似文献   

2.
In hemoglobin Rothschild arginine replaces the normal tryptophan at β37(C3), at α1β2 contact. Residue β37 is in close proximity to Argα92 (FG4). Substitution of Trp by Arg at β37 results in two positively charged Arg residues at FG4 and C3 facing each other, a situation that would destabilize the subunit constraints essential for the tetrameric integrity of the molecule and for the reduced ligand affinity of unliganded normal HB3 compared to isolated chains.Our studies show liganded HbR is extensively dissociated into dimers and has a high ligand affinity in phosphate buffer and a low ligand affinity in bis-Tris at alkaline pH. Kinetic studies indicate that in the T state HbR has a higher ligand affinity than HbA. This is explained by reduced subunit constraints in the T state and dissociation of the monoliganded species (Hb4L) into dimers. Kinetic studies also show that R state Hb Rothschild has lower ligand affinity than R state HbA. These results are explained on the basis of extensive dissociation of R state Hb Rothschild into dimers and lower ligand affinity of dimers as compared to triliganded tetramers (α2β2(O2)3). Kinetic data indicate that the lower ligand affinity of dimers (Hb Rothschild) as compared to that of triliganded tetramers (HbA) is due to the increased ligand dissociation rates in the case of oxyhemoglobin and reduced ligand combination in the case of carboxyderivatives. Both the CO combination reaction time-course around 425 nm and the O2 dissociation rates at 437.8 nm indicate the presence of large α,β-chain differences in Hb Rothschild.  相似文献   

3.
The effects of actin on the electron spin resonance of spin-labeled myosin   总被引:4,自引:0,他引:4  
Myosin and heavy meromyosin have been spin labeled at either the S1 or S2 thiol groups, and their interaction with F-actin has been studied by electron spin resonance, both in the absence of substrate and during the hydrolysis of ATP. The spectrum of myosin labeled at either group indicates strong immobilization of the label. In the absence of substrate, actin added to S1-labeled myosin slightly increases the separation of the outer spectral peaks, indicating a decrease in the mobility of the spin label. Actin also reduces the microwave power required to saturate the esr signal of S1-labeled myosin or heavy meromyosin. The latter phenomenon is a more sensitive measure of the actin-myosin interaction than the spectral change seen in the absence of saturation. This suggests that saturation measurements may provide a more sensitive method of detecting changes in the environment of slowly tumbling nitroxide radicals than spectral measurements carried out in the absence of saturation. The decrease in the amplitude of the spectrum on adding actin at saturating microwave power was used to determine the stoichiometry of the interaction between actin and heavy meromyosin. This decrease is maximal when 2 moles of actin monomer are added per mole of heavy meromyosin and is reversed when actin and myosin are dissociated by ATP. During the steady state hydrolysis of ATP, actin had no detectable effect on the spectrum of S1-labeled myosin. It can be concluded that spin labels bound to the S1 groups are in a region of the myosin molecule that is affected by the interaction with actin. Actin does not affect the rate at which the bound spin label is reduced by dithiothreitol nor does the spin labeling of S1 groups affect the activation by actin of the ATPase activity of myosin. These findings suggest that the most likely mechanism by which actin alters the mobility of labels on S1 groups involves a change in the conformation of myosin. If a spin label is bound to the S2 thiol groups rather than the S1 groups, then actin has no detectable effect on the spectrum either in the presence or absence of ATP.  相似文献   

4.
Nitroxide spin labels are used for double electron-electron resonance (DEER) measurements of distances between sites in biomolecules. Rotation of gem-dimethyls in commonly used nitroxides causes spin echo dephasing times (Tm) to be too short to perform DEER measurements at temperatures between ∼80 and 295 K, even in immobilized samples. A spirocyclohexyl spin label has been prepared that has longer Tm between 80 and 295 K in immobilized samples than conventional labels. Two of the spirocyclohexyl labels were attached to sites on T4 lysozyme introduced by site-directed spin labeling. Interspin distances up to ∼4 nm were measured by DEER at temperatures up to 160 K in water/glycerol glasses. In a glassy trehalose matrix the Tm for the doubly labeled T4 lysozyme was long enough to measure an interspin distance of 3.2 nm at 295 K, which could not be measured for the same protein labeled with the conventional 1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-(methyl)methanethio-sulfonate label.  相似文献   

5.
The S1 thiol groups of heavy meromyosin (HMM) have been selectively spin labeled with a paramagnetic analog of iodoacetamide (10) and the effects of tryptic digestion on the ESR spectrum and ATPase activity have been studied. The loss of ATPase activity on tryptic digestion occurs at the same rate with spin-labeled or unlabeled HMM suggesting that spin labeling produces no major change in the conformation of HMM. ESR spectra indicate that spin labels bound to S1 groups of HMM are strongly immobilized; spectra of subfragment-1 isolated from tryptic digests of spin-labeled HMM are the same as those of labeled HMM. ESR spectra of S1-spin-labeled peptides produced by tryptic digestion of HMM indicate essentially no immobilization of labels, the spectra being similar to that of a solution of free labels. The ESR spectrum of an unfractionated digest of HMM exhibits a peak attributable to strongly immobilized labels on HMM and subfragment-1 and a peak attributable to weakly immobilized labels bound to peptides. The rate at which spin-labeled peptides are released on tryptic digestion can be measured on the unfractionated digest by the decrease in the ESR peak corresponding to HMM and subfragment-1. The appearance of peptides containing spin-labeled S1 groups parallels the loss of ATPase activity. No evidence has been found for the existence of an enzymatically active subfragment-1 lacking S1 thiol groups.  相似文献   

6.
Nitroxide spin labels were incorporated into selected sites within the β-barrel of the bacterial outer-membrane transport protein BtuB by site-directed mutagenesis, followed by chemical modification with a methanethiosufonate spin label. The electron paramagnetic resonance lineshapes of the spin-labeled side chain (R1) from these sites are highly variable, and have spectral parameters that reflect secondary structure and local steric constraints. In addition, these lineshape parameters correlate with crystallographic structure factors for Cα carbons, suggesting that the motion of the spin label is modulated by both the local modes of motion of the spin label and the local dynamics of the protein backbone. Experiments performed as a function of lipid composition and sample temperature indicate that nitroxide spin labels on the exterior surface of BtuB, which face the membrane hydrocarbon, are not strongly influenced by the phase state of the bulk lipids. However, these spectra are modulated by membrane hydrocarbon thickness. Specifically, the values of the scaled mobility parameter for the R1 lineshapes are inversely proportional to the hydrocarbon thickness. These data suggest that protein dynamics and structure in BtuB are directly coupled to membrane hydrophobic thickness.  相似文献   

7.
It is demonstrated that tracer diffusion coefficients can be determined for oxyhemoglobin A (HbA-O2) and oxyhemoglobin S (HbS-O2) in intact blood cells by means of pulsed field gradient NMR (PFG-NMR). This is possible because the method discriminates between both rapidly moving water molecules and molecules having small proton transverse relaxation times (T2). The results indicate that only hemoglobin molecules contribute to the echo signals when large field gradients are used. The dependence of the measured diffusion coefficients on osmolarity and pH are attributed to changes in hemoglobin concentration resulting from changes in cell volume.  相似文献   

8.
The barbiturate pentobarbital binds to γ-aminobutyric acid type A (GABAA) receptors, and this interaction plays an important role in the anesthetic action of this drug. Depending on its concentration, pentobarbital can potentiate (∼10-100 μM), activate (∼100-800 μM), or block (∼1-10 mM) the channel, but the mechanisms underlying these three distinct actions are poorly understood. To investigate the drug-induced structural rearrangements in the GABAA receptor, we labeled cysteine mutant receptors expressed in Xenopus oocytes with the sulfhydryl-reactive, environmentally sensitive fluorescent probe tetramethylrhodamine-6-maleimide (TMRM). We then used combined voltage clamp and fluorometry to monitor pentobarbital-induced channel activity and local protein movements simultaneously in real time. High concentrations of pentobarbital induced a decrease in TMRM fluorescence (FTMRM) of labels tethered to two residues in the extracellular domain (α1L127C and β2L125C) that have been shown previously to produce an increase in FTMRM in response to GABA. Label at β2K274C in the extracellular end of the M2 transmembrane helix reported a small but significant FTMRM increase during application of low modulating pentobarbital concentrations, and it showed a much greater FTMRM increase at higher concentrations. In contrast, GABA decreased FTMRM at this site. These results indicate that GABA and pentobarbital induce different structural rearrangements in the receptor, and thus activate the receptor by different mechanisms. Labels at α1L127C and β2K274C change their fluorescence by substantial amounts during channel blockade by pentobarbital. In contrast, picrotoxin blockade produces no change in FTMRM at these sites, and the pattern of FTMRM signals elicited by the antagonist SR95531 differs from that produced by other antagonists. Thus, with either channel block by antagonists or activation by agonists, the structural changes in the GABAA receptor protein differ during transitions that are functionally equivalent.  相似文献   

9.
Spin labels based on cinobufagin, a specific inhibitor of the Na,K-ATPase, have proved valuable tools to characterize the binding site of cardiotonic steroids (CTSs), which also constitutes the extracellular cation pathway. Because existing literature suggests variations in the physiological responses caused by binding of different CTSs, we extended the original set of spin-labeled inhibitors to the more potent bufalin derivatives. Positioning of the spin labels within the Na,K-ATPase site was defined and visualized by molecular docking. Although the original cinobufagin labels exhibited lower affinity, continuous-wave electron paramagnetic resonance spectra of spin-labeled bufalins and cinobufagins revealed a high degree of pairwise similarity, implying that these two types of CTS bind in the same way. Further analysis of the spectral lineshapes of bound spin labels was performed with emphasis on their structure (PROXYL vs. TEMPO), as well as length and rigidity of the linkers. For comparable structures, the dynamic flexibility increased in parallel with linker length, with the longest linker placing the spin label at the entrance to the binding site. Temperature-related changes in spectral lineshapes indicate that six-membered nitroxide rings undergo boat-chair transitions, showing that the binding-site cross section can accommodate the accompanying changes in methyl-group orientation. D2O-electron spin echo envelope modulation in pulse-electron paramagnetic resonance measurements revealed high water accessibilities and similar polarity profiles for all bound spin labels, implying that the vestibule leading to steroid-binding site and cation-binding sites is relatively wide and water-filled.  相似文献   

10.
Observation of allosteric transition in hemoglobin   总被引:6,自引:0,他引:6  
Two conclusions have been drawn from NMR studies of mixed state hemoglobins. First the α and β subunits in hemoglobin are not equivalent in their conformational properties. Second the mixed state hemoglobin (αIIICN βII)2 can take two different quaternary structures without changing the degree of ligation. One of the two structures is similar to that of deoxyhemoglobin and the other to that of oxyhemoglobin.  相似文献   

11.
Spin labeling with a maleimido spin label has been used to investigate conformational changes of bovine cytochrome c oxidase. These experiments show that the spin label is immobilized to a lesser degree when the enzyme is in the “oxygenated” form than it is in the oxidized state and support the view that the oxygenated form is a conformational variant. Experiments in which the maleimido spin-labeled cytochrome c oxidase was titrated with H2O2 reveal that the peroxide-treated enzyme, although possessing an absorption spectrum similar to that of the oxygenated form, has an electron paramagnetic resonance (epr) spectrum that is different from that of either the oxygenated form or the oxidized state. Extremes of pH cause a marked decrease in the degree of immobilization of maleimido spin labels bound to the oxidase. Alterations in the epr spectrum are reversible if the pH is held between 5.3 and 10.2 but are irreversible outside that range. Urea and guanidine hydrochloride also decrease the immobilization of the spin labels bound to the oxidase. The nature of the epr spectra indicates that under these conditions the enzyme assumes a more open conformation. Exposure to concentrations of sodium dodecyl sulfate as high as 10% does not result in as much loss of the immobilization as with urea or guanidine. Detergents such as cholate, Tween 80, and Triton X-100 have no significant effect on the epr spectrum of maleimido spin-labeled cytochrome c oxidase.  相似文献   

12.
Hemoglobin was spin labeled at β-93(F9)-cysteine with N-oxy-2,2,6,6-tetramelhylpiperidinylmaleimide. The inward shift of the high-field hyperfine line (ΔHXXX) position in the ESR spectra of the Spin label was measured aS a function of temperature. One can expect that an abrupt change in the microenvironment around the tightly bound spin label will be reflected in the function ΔHXXX(T) as a discontinuity (break point). This was shown for aquo-, azido-. nitro- and oxyhemoglobin derivatives. The presented results suggest that the microenvironment around the tightly hound spin label in those methemoglobin derivatives that exhibit the mixed-spin state of the heme iron is prone to an abrupt change above a certain ligand-specific temperature. The change in microenvironment of the spin label is probably due to a temperature-dependent change in the tertiary structure of the protein.  相似文献   

13.
14.
A maleimide spin label (N-(1-oxyl-2,2,5,5-tetramethylpyrrolidinyl)-maleimide) was reacted with oxyhemoglobin-free cell stromata of normal and sickle cells. The EPR spectrum of spin-labeled red cell membranes showed that the spin labels are attached to at least two different binding sites. There was a major signal, A, which characterized a strongly immobilized environment and a minor signal, B, which characterized a weakly immobilized environment. Quantitative EPR measurements using equal amounts of Hb AA and Hb SS red blood cells demonstrated that Hb SS red cell membranes had an approximately four times higher EPR signal intensity than Hb AA red cell membranes ((7.98 ± 1.14) · 105 and (2.2 ± 1.2) · 105 spin labels/cell, respectively). Moreover, the ratio of signal intensities A and B are different in these cells. Comparative spectrophotometric studies of membrane-associated denatured hemoglobins of Hb AA and Hb SS red cell membranes suggested that the EPR signal A is derived from spin labels attached to membrane-associated denatured hemoglobin, while signal B is mainly from spin labels attached to membrane-associated denatured hemoglobin, while signal B is mainly from spin labels attached to membranes. The combination of EPR spectrum of Hb AA membranes pretreated with N-ethyl-maleimide and that of spin-labeled precipitated hemoglobin further strengthened this conclusion.  相似文献   

15.
Electron paramagnetic resonance (EPR) spectroscopy coupled with site-directed spin labeling (SDSL) is a valuable tool for characterizing the mobility and conformational changes of proteins but has seldom been applied to intrinsically disordered proteins (IDPs). Here, IA3 is used as a model system demonstrating SDSL-EPR characterization of conformational changes in small IDP systems. IA3 has 68 amino acids, is unstructured in solution, and becomes α-helical upon addition of the secondary structural stabilizer 2,2,2-trifluoroethanol (TFE). Two single cysteine substitutions, one in the N-terminus (S14C) and one in the C-terminus (N58C), were generated and labeled with three different nitroxide spin labels. The resultant EPR line shapes of each of the labels were compared and each reported changes in mobility upon addition of TFE. Specifically, the spectral line shape parameters h(+1)/h(0), the local tumbling volume (VL), and the percent change of the h(−1) intensity were utilized to quantitatively monitor TFE-induced conformational changes. The values of h(+1)/h(0) as a function of TFE titration varied in a sigmoidal manner and were fit to a two-state Boltzmann model that provided values for the midpoint of the transition, thus, reporting on the global conformational change of IA3. The other parameters provide site-specific information and show that S14C-SL undergoes a conformational change resulting in more restricted motion than N58C-SL, which is consistent with previously published results obtained by studies using NMR and circular dichroism spectroscopy indicating a higher degree of α-helical propensity of the N-terminal segment of IA3. Overall, the results provide a framework for data analyzes that can be used to study induced unstructured-to-helical conformations in IDPs by SDSL.  相似文献   

16.
IS2-IS2 and IS3-IS3 relative recombination frequencies in F integration   总被引:5,自引:0,他引:5  
The relative integrative recombination frequencies of the F plasmid IS2 and IS3 elements were determined at two Escherichia coli K-12 chromosomal sites by hybridization analysis of Hfr DNA. The sequence organizations of the independent Hfr strains formed by F integration atα3β3 indicate that the relative recombinational frequencies at the two F plasmid IS3 elementsα1β1 and α2β2 are not significantly different. A comparison of the relative recombinational frequencies of the IS2 and IS3 elements of F was provided by analysis of DNA from Hfr strains having F integrated betweenlacandproC (i.e., at the IS2 or at the IS3 element (α5β5) located in this region). No instances of F integration atα5β5 were detected, indicating that integrative recombination at IS2 is significantly more frequent than at IS3 in this chromosomal region.  相似文献   

17.
1. The ESR spectra of both phosphatidylcholine and phosphatidylethanolamine spin labels reveal an immobilized lipid component (τR ? 50 ns), in addition to a fluid component (τR ~ 1 ns), in acetylcholine receptorrich membranes prepared from Torpedo marmorata electroplax according to the method of Cohen et al. (Cohen, J.B., Weber, M., Huchet, M. and Changeux, J.P. (1972) FEBS Lett. 26, 43–47). 2. The ESR spectra of the androstanol spin label display a component corresponding to molecules which are immobilized with respect to rotation about the long molecular axis (
), in addition to the fluid lipid bilayer component in which the molecules are rotating rapidly about their long axes (
). This immobilized component is observed throughout the temperature range 2–22°C, at an approximately constant relative intensity of approx. 45% of the total, which is quantitatively the same as previously observed with fatty acid spin labels.  相似文献   

18.
A hallmark of the common Alzheimer's disease (AD) is the pathological conversion of its amphiphatic amyloid-β (Aβ) peptide into neurotoxic aggregates. In AD patients, these aggregates are often found to be tightly associated with neuronal GM1 ganglioside lipids, suggesting an involvement of GM1 not only in aggregate formation but also in neurotoxic events. Significant interactions were found between micelles made of newly synthesized fluorescent GM1 gangliosides labeled in the polar headgroup or the hydrophobic chain and Aβ(1-40) peptide labeled with a BODIPY-FL-C1 fluorophore at positions 12 and 26, respectively. From an analysis of energy transfer between the different fluorescence labels and their location in the molecules, we were able to place the Aβ peptide inside GM1 micelles, close to the hydrophobic-hydrophilic interface. Large unilamellar vesicles composed of a raftlike GM1/bSM/cholesterol lipid composition doped with labeled GM1 at various positions also interact with labeled Aβ peptide tagged to amino acids 2 or 26. A faster energy transfer was observed from the Aβ peptide to bilayers doped with 581/591-BODIPY-C11-GM1 in the nonpolar part of the lipid compared with 581/591-BODIPY-C5-GM1 residing in the polar headgroup. These data are compatible with a clustering process of GM1 molecules, an effect that not only increases the Aβ peptide affinity, but also causes a pronounced Aβ peptide penetration deeper into the lipid membrane; all these factors are potentially involved in Aβ peptide aggregate formation due to an altered ganglioside metabolism found in AD patients.  相似文献   

19.
To help interpret the electron spin resonance (esr) spectra of spin-labeled actin, the positions of attachment of the spin labels, N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) maleimide and N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) iodoacetamide to rabbit skeletal muscle actin have been determined. For this purpose spin-labeled peptides released by tryptic digestion of the spin-labeled actin were isolated by chromatography and identified from their positions of elution and amino acid composition.With purified F-actin that had not undergone structural changes both labels reacted exclusively with the sulfhydryl group of the C-terminal sequence. But if the actin was stored in the F-form in the absence of ATP it evidently underwent a structural alteration because reaction was then at another sulfhydryl group, in the N-terminal sequence, and the actin had an irregular appearance in the electron microscope. ADP and tripolyphosphate were as effective as ATP in preventing this alteration. A maximum of 1 equiv of spin label was bound, irrespective of the site of labeling, and the two sites appeared to be mutually exclusive, possibly because they are adjacent. With G-actin, and with actin denatured by guanidine hydrochloride, there was also reaction at other sites. The shapes of the esr spectra of F-actin that contained Mg2+, Ca2+, or Mn2+ did not depend on whether labeling was at the C- or N-terminal positions, although F-actin labeled in the latter position contained a small proportion of highly mobile label, possibly a result of denaturation. The reduction in the size of the esr signal of labeled G-actin on replacing Mg2+ with Mn2+ did not appear to be dependent on the position of labeling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号