首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3‐only protein EGL‐1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage‐induced apoptosis also requires the nematode p53 homolog CEP‐1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL‐1 and CEP‐1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress‐induced apoptosis, we found the RNA‐binding protein TIAR‐1 (a homolog of the mammalian TIA‐1/TIAR family of proteins). Here, we show that TIAR‐1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR‐1 acts downstream of CED‐9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced‐4 or ced‐3 mRNAs accumulation directly. TIAR‐1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR‐1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR‐1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions. genesis 51:690–707. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
5.
Studies of sterile mutants in Caenorhabditis elegans have uncovered new insights into fundamental aspects of gamete cell biology, development, and function at fertilization. The genome sequences of C. elegans, Caenorhabditis briggsae and Caenorhabditis remanei allow for informative comparative studies among these three species. Towards that end, we have examined wild-type sperm morphology and activation (spermiogenesis) in each. Light and electron microscopy studies reveal that general sperm morphology, organization, and ultrastructure are similar in all three species, and activation techniques developed for C. elegans were found to work well in both C. briggsae and C. remanei. Despite important differences in the reproductive mode between C. remanei and the other two species, most genes required for spermiogenesis are conserved in all three. Finally, we have also examined the subcellular distribution of sperm epitopes in C. briggsae and C. remanei that cross-react with anti-sera directed against C. elegans sperm proteins. The baseline data in this study will prove useful for the future analysis and interpretation of sperm gene function across nematode species.  相似文献   

6.
Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte‐specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C‐terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf‐1 and characterized it in the context of the sRNA pathways of C. elegans. We report that GTSF‐1 is not required for Piwi‐mediated gene silencing. Instead, gtsf‐1 mutants show a striking depletion of 26G‐RNAs, a class of endogenous sRNAs, fully phenocopying rrf‐3 mutants. We show, both in vivo and in vitro, that GTSF‐1 interacts with RRF‐3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF‐1 is required for the assembly of a larger RRF‐3 and DCR‐1‐containing complex (ERIC), thereby allowing for 26G‐RNA generation. We propose that GTSF‐1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA‐mediated silencing activities.  相似文献   

7.
To survive and reproduce, living organisms must evolve numerous mechanisms to re‐adjust their physiology when encountering adverse conditions that subject them to severe stress. We found that short‐term starvation (STS) stress in young adult male Caenorhabditis elegans can significantly improve their vitality (relative to nonstressed males) when they are aged. In addition, we found that stress‐treated aged males maintained reproductive activity equivalent to young males, whereas nonstressed aged males quickly lost reproductive ability. STS stress can preserve sperm number and quality in aged male worms. Spermatogenesis involves germ cell mitosis and meiosis. We found that germ cell meiotic activity is more sensitive to aging than mitotic activity and is declining rapidly with age. We examined the role of numerous factors important for spermatogenesis on STS‐preserved spermatogenesis during aging. Our results show that mutant strains deficient in anaphase‐promoting complex/cyclosome (APC/C) function fail to exhibit the STS stress‐enhanced spermatogenesis found in wild‐type N2 worms, suggesting that the mechanism underlying starvation‐induced spermatogenesis involves the APC/C complex, a conserved ubiquitin‐protein ligase E3 complex. Furthermore, transgenic expression of FZY‐1/CDC‐20, a coactivator of APC/C, ameliorated the age‐associated decline of meiosis, similar to the hormetic effect of STS.  相似文献   

8.
In Caenorhabditis briggsae hermaphrodites, spermatogenesis begins in the L4 larval stage and persists into early adulthood. Oogenesis begins after spermatogenesis; the sperm‐to‐oocyte transition is irreversible. The timing of this transition is believed to have evolved in response to selection to maximize the intrinsic growth rate. Sperm‐to‐oocyte transitions occurred early in Cbr‐met‐2 and Cbr‐fem‐3 mutants. These early transitions resulted in reduced brood sizes, but had little or no impact on the intrinsic growth rate. In Cbr‐met‐2; Cbr‐fem‐3 doubly mutant hermaphrodites, the transition to oogenesis occurred even earlier and brood size was further reduced, indicating that Cbr‐met‐2 and Cbr‐fem‐3 regulate the sperm‐to‐oocyte transition through separate pathways. Mutations in Cbr‐met‐2 also resulted in an increase in the frequency of males in mutant populations. These increased male frequencies were not caused by increased rates of X nondisjunction during oogenesis in mutant hermaphrodites. Rather, increases in the rates of outcrossing in mutant populations likely were an indirect effect of reduced brood sizes derived from self‐fertilization. Based on these observations, it is possible that the timing of the sperm‐to‐oocyte transition in C. briggsae evolved in response to sexual selection on hermaphrodites to limit rates of outcrossing. Mutations in the orthologous Caenorhabditis elegans gene, Cel‐met‐2, did not impact the timing of the sperm‐to‐oocyte transition, consistent with the independent evolution of hermaphroditic reproduction in these species. Although brood sizes were reduced in Cel‐met‐2 mutant strains, increased male frequencies were not observed. Cbr‐ and Cel‐met‐2 mutations also differed in terms of germline mortality, observed in C. elegans, but not in C. briggsae.  相似文献   

9.
For several years, DEAD box RNA helicase Vasa (DDX4) has been used as a bona fide germline marker in different organisms. C. elegans VBH-1 is a close homolog of the Vasa protein, which plays an important role in gametogenesis, germ cell survival and embryonic development. Here, we show that VBH-1 protects nematodes from heat shock and oxidative stress. Using the germline-defective mutant glp-4(bn2) we found that a potential somatic expression of vbh-1 might be important for stress survival. We also show that the VBH-1 paralog LAF-1 is important for stress survival, although this protein is not redundant with its counterpart. Furthermore, we observed that the mRNAs of the heat shock proteins hsp-1 and sip-1 are downregulated when vbh-1 or laf-1 are silenced. Previously, we reported that in C. elegans, VBH-1 was primarily expressed in P granules of germ cells and in the cytoplasm of all blastomeres. Here we show that during stress, VBH-1 co-localizes with CGH-1 in large aggregates in the gonad core and oocytes; however, VBH-1 aggregates do not overlap with CGH-1 foci in early embryos under the same conditions. These data demonstrate that, in addition to the previously described role for this protein in the germline, VBH-1 plays an important role during the stress response in C. elegans through the potential direct or indirect regulation of stress response mRNAs.  相似文献   

10.
Germ cells in many animals possess a specialized cytoplasm in the form of granules that contain RNA and protein complexes essential for the function and preservation of the germline. The mechanism for the formation of these granules is still poorly understood; however, the lack of conservation in their components across different species suggests evolutionary convergence in the assembly process. Germ granules are assumed to be present in all nematodes with a preformed germline. However, few studies have clearly identified these structures in species other than Caenorhabditis elegans and even less have carried functional analysis to provide a broader panorama of the granules composition in the phylum. We adopted a bioinformatics approach to investigate the extension of conservation in nematodes of some known C. elegans germ granule components, as a proxy to understand germ granules evolution in this phylum. Unexpectedly, we found that, in nematodes, the DEAD box RNA helicase Vasa, a conserved protein among different phyla, shows a complex history of clade-specific duplications and sequence divergence. Our analyses suggest that, in nematodes, Vasa’s function might be shared among proteins like LAF-1, VBH-1, and GLH-1/-2/-3 and GLH-4. Key components of P granules assembly in C. elegans, like the PGL protein family, are only preserved in Caenorhabditis species. Our analysis suggests that germ granules assembly may not be conserved in nematodes. Studies on these species could bring insight into the basic components required for this pathway.  相似文献   

11.
12.
As a dual function protein, β‐catenin affects both cell adhesion and mediates canonical Wnt/β‐catenin cell signaling. β‐Catenin is prominently expressed in somatic Sertoli cells in the testis and postmeiotic germ cells, suggesting an additional role in spermatogenesis. It was reported previously that Cre/loxP‐mediated conditional inactivation of the β‐catenin gene (Ctnnb1) in male gonads using a protamine promoter‐driven Cre transgene (Prm‐cre) resulted in partial infertility, reduced sperm count, and abnormal spermatogenesis. In this report, we demonstrated that the conditional deletion of Ctnnb1 using a germ cell specific Cre transgene (Stra8‐icre) had no effect on male fertility. We have shown that the Stra8‐icre transgene was highly efficient in generating deletion in early pre‐meiotic and post‐meiotic cells. No differences in anatomical or histological presentation were found in the mutant testis, the production of viable sperm was similar, and no abnormalities in DNA sperm content were detected. We concluded that β‐catenin is fully dispensable in germ cells for spermatogenesis. The conflicting results from the earlier study may have been due to off‐target expression of Prm‐cre in testicular somatic cells. In future studies, the analysis of conditional mutants using several Cre‐transgenes should be encouraged to reduce potential errors. genesis 52:328–332, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
Fertilization triggers cell remodeling from each gamete to a totipotent zygote. Using Caenorhabditis elegans as a model system, it has been revealed that lysosomal degradation pathways play important roles in cellular remodeling during this developmental transition. Endocytosis and autophagy, two pathways leading to the lysosomes, are highly upregulated during this period. A subset of maternal membrane proteins is selectively endocytosed and degraded in the lysosomes before the first mitotic cell division. Autophagy is also induced shortly after fertilization and executes the degradation of paternally inherited embryonic organelles, e.g. mitochondria and membranous organelles. This mechanism underlies the maternal inheritance of the mitochondrial genome. Autophagy is also required for the removal of extra P‐granule (germ granules in C. elegans) components in somatic cells of early embryos and thereby for the specific distribution of P‐granules to germ cells. This review focuses on recent advances in the study of the physiological roles and mechanisms of lysosomal pathways during early development in C. elegans.   相似文献   

16.
17.
18.
Resveratrol (RSV) extends the lifespan of various organisms through activation of sirtuin. However, whether RSV‐mediated longevity is entirely dependent upon sirtuin is still controversial. Thus, understanding additional mechanisms concerning the genetic requirements for the biological activity of RSV needs to be clarified to utilize the beneficial effects of RSV. In this study using Caenorhabditis elegans as a model system, we found that MPK‐1 (an ERK homolog) signaling is necessarily required for RSV‐mediated longevity of sir‐2.1/sirtuin mutants as well as for wild‐type worms. We demonstrated that MPK‐1 contributes to RSV‐mediated longevity through nuclear accumulation of SKN‐1 in a SIR‐2.1/DAF‐16 pathway‐independent manner. The positive effect of RSV in regulating lifespan was completely abolished by RNA interference against mpk‐1 in the sir‐2.1 and daf‐16 mutants, strongly indicating that the MPK‐1/SKN‐1 pathway is involved in RSV‐mediated longevity, independently of SIR‐2.1/DAF‐16. We additionally found that RSV protected worms from oxidative stress via MPK‐1. In addition to organismal aging, RSV prevented the age‐associated loss of mitotic germ cells, brood size, and reproductive span through MPK‐1 in C. elegans germline. Therefore, our findings not only provide new mechanistic insight into the controversial effects of RSV on organismal longevity, but additionally have important implications in utilizing RSV to improve the outcome of aging‐related diseases.  相似文献   

19.
DNA methyltransferase1o (Dnmt1o), which is specific to oocyte and preimplantation embryo, plays a role in maintaining DNA methylation in mammalian cells. Here, we investigated the methylation status of CpGs sites in the Dnmt1o 5′‐flanking region in germ cells at different stages of oogenesis or spermatogenesis. The methylation levels of the CpG sites at the 5′‐flanking regions were hypermethylated in growing oocytes of all follicular stages, while the oocytes in meiotic metaphase II (MII) were demethylated. The methylation pattern within the CpGs sites in the 5′‐flanking region, however, was dramatically changed during spermatogenesis. We observed that there was significant non‐CpG methylation both in MII oocytes and spermatocytes. Although a low methylation level in non‐CpG sites was observed in primary and secondary oocytes, the CpA site of position 25 and CpT site of position 29 within the no‐CpG region in the 5′‐flanking region of Dnmt1o was highly methylated in MII oocytes. During spermatogenesis, the low degree of methylation at CpG sites in spermatocytes increased to a higher degree in sperm, while the high ratio of methylation in non‐CpG sites in spermatocytes decreased. Together, germ cells showed inverted methylation patterns between CpG and non‐CpG sites in the Dnmt1o 5′‐upstream region, and the methylation pattern during oogenesis did not drastically change, remaining generally hypomethylated at the MII stage. Mol. Reprod. Dev. 80: 212–222, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Membraneless organelles are distinct compartments within a cell that are not enclosed by a traditional lipid membrane and instead form through a process called liquid‐liquid phase separation. Examples of these non‐membrane‐bound organelles include nucleoli, stress granules, P bodies, pericentriolar material and germ granules. Many recent studies have used Caenorhabditis elegans germ granules, known as P granules, to expand our understanding of the formation of these unique cellular compartments. From this work, we know that proteins with intrinsically disordered regions (IDRs) play a critical role in the process of phase separation. IDR phase separation is further tuned through their interactions with RNA and through protein modifications such as phosphorylation and methylation. These findings from C elegans, combined with work done in other model organisms, continue to provide insight into the formation of membraneless organelles and the important role they play in compartmentalizing cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号