首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alain Gauthier 《BBA》2006,1757(11):1547-1556
The flash-induced thermoluminescence (TL) technique was used to investigate the action of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) on charge recombination in photosystem II (PSII). Addition of low concentrations (μM range) of TMPD to thylakoid samples strongly decreased the yield of TL emanating from S2QB and S3QB (B-band), S2QA (Q-band), and YD+QA (C-band) charge pairs. Further, the temperature-dependent decline in the amplitude of chlorophyll fluorescence after a flash of white light was strongly retarded by TMPD when measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Though the period-four oscillation of the B-band emission was conserved in samples treated with TMPD, the flash-dependent yields (Yn) were strongly declined. This coincided with an upshift in the maximum yield of the B-band in the period-four oscillation to the next flash. The above characteristics were similar to the action of the ADRY agent, carbonylcyanide m-chlorophenylhydrazone (CCCP). Simulation of the B-band oscillation pattern using the integrated Joliot-Kok model of the S-state transitions and binary oscillations of QB confirmed that TMPD decreased the initial population of PSII centers with an oxidized plastoquinone molecule in the QB niche. It was deduced that the action of TMPD was similar to CCCP, TMPD being able to compete with plastoquinone for binding at the QB-site and to reduce the higher S-states of the Mn cluster.  相似文献   

2.
Fluorescence time curves (Kautsky effect) were studied in anaerobic Scenedesmus obliquus, with an apparatus capable of simultaneous recording of O2 exchange, and far-red actinic illumination. Results, as interpreted in terms of electron transport reactions, suggest: In the course of becoming anaerobic, fluorescence induction undergoes a series of changes, indicating at least three different effects of the absence of O2 on electron transport. (1) Immediately on removal of O2, once the pool of intermediates between the two photo-systems is reduced by light reaction II, electron flow stops, resulting in high fluorescence yield and a cessation of O2 evolution. O2 appears to regulate linear electron flow and cyclic feedback of electrons to the intermediate pool. (2) An endogenous reductant formed anaerobically reduces the System II acceptors in the dark. The time course of this reduction is at least biphasic, indicative of inhomogeneity of the primary acceptor pool. Prolonged dark anaerobic treatment induces maximal initial fluorescence which decays rapidly in light and with a System I action spectrum. (3) Anaerobic treatment eventually results in deactivation of the oxidizing side of System II, limiting System II even when the acceptors are oxidized by System I pre-illumination.  相似文献   

3.
Hans-Walter Tromballa 《BBA》1981,636(1):98-103
1. Low concentrations of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced net K+ uptake by Chlorella fusca, optimal concentrations being 3 μM CCCP in the light and 1 μM CCCP in the dark. Higher concentrations increasingly stimulated K+ release. 2. Measurements of the unidirectional K+ fluxes showed that CCCP-induced net K+ uptake in the light was mainly a consequence of an inhibition of efflux. In the dark, influx was slightly stimulated in addition. 3. In conditions of CCCP-induced net K+ uptake, the ATP level was decreased by less than 10%. With higher CCCP concentrations it fell drastically. 4. By means of the 5,5-dimethyloxazolidine-2,4-dione distribution technique, an acidification of the cell interior on the addition of CCCP was found. 5. It is concluded that uncoupler-induced net K+ uptake is due to an enhanced proton leakage into the cell across the plasmalemma. Intracellular acidification by this process stimulates ATP-dependent K+/H+ exchange which, in itself, is not affected at low uncoupler concentrations.  相似文献   

4.
5.
Proton release inside thylakoids, which is linked to the action of the water-oxidizing enzyme system, was investigated spectrophotometrically with the dye neutral red under conditions when the external phase was buffered. Under excitation of dark-adapted chloroplasts with four short laser flashes in series, the pattern of proton release as a function of the flash number was recorded and interpreted in the light of the generally accepted scheme for consecutive transitions of the water-oxidizing enzyme system: S0 → S1, S1 → S2, S2 → S3, S3 → S4, S0. It was found that the proton yield after the first flash varied in a reproducible manner, being dependent upon the dark pretreatment given. In terms of the proton-electron reaction during these transitions, the pattern was as follows. In strictly dark-adapted chloroplasts (frozen chloroplasts thawed in darkness and kept for at least 7 min in the dark after dilution), it was fitted well by a stoichiometry of 1:0:1:2. In a less stringently dark-adapted preparation (as above but thawed under light), it was fitted by 0:1:1:2. Mechanistically this is not yet understood. However, it is a first step towards resolving controversy over this pattern among different laboratories. Under conditions where the 1:0:1:2 stoichiometry was observed, proton release was time resolved. Components with half-rise times of 500 and 1000 μs could be correlated with the S2 → S3 and S3 → S4 transitions, respectively. Proton release during the S0 → S1 transition is more rapid, but is less well attributable to the transitions due to error proliferation. A distinct component with a half-rise time of only 100 μs was observed after the second flash. Since it did not fit into the expected kinetics (based on literature data) for the Si → Si+1 transitions, we propose that it reflects proton release from a site which is closer to the reaction center of Photosystem (PS) II than the water-splitting enzyme system. This is supported by the observation of rapid proton release under conditions where water oxidation is blocked. Related experiments on the pattern of proton uptake at the reducing side of PS II indicated that protons act as specific counterions for semiquinone anions without binding to them.  相似文献   

6.
In Photosystem II (PSII), the Mn4CaO5-cluster of the active site advances through five sequential oxidation states (S0 to S4) before water is oxidized and O2 is generated. Here, we have studied the transition between the low spin (LS) and high spin (HS) configurations of S2 using EPR spectroscopy, quantum chemical calculations using Density Functional Theory (DFT), and time-resolved UV-visible absorption spectroscopy. The EPR experiments show that the equilibrium between S2LS and S2HS is pH dependent, with a pKa?≈?8.3 (n?≈?4) for the native Mn4CaO5 and pKa?≈?7.5 (n?≈?1) for Mn4SrO5. The DFT results suggest that exchanging Ca with Sr modifies the electronic structure of several titratable groups within the active site, including groups that are not direct ligands to Ca/Sr, e.g., W1/W2, Asp61, His332 and His337. This is consistent with the complex modification of the pKa upon the Ca/Sr exchange. EPR also showed that NH3 addition reversed the effect of high pH, NH3-S2LS being present at all pH values studied. Absorption spectroscopy indicates that NH3 is no longer bound in the S3TyrZ state, consistent with EPR data showing minor or no NH3-induced modification of S3 and S0. In both Ca-PSII and Sr-PSII, S2HS was capable of advancing to S3 at low temperature (198?K). This is an experimental demonstration that the S2LS is formed first and advances to S3via the S2HS state without detectable intermediates. We discuss the nature of the changes occurring in the S2LS to S2HS transition which allow the S2HS to S3 transition to occur below 200?K. This work also provides a protocol for generating S3 in concentrated samples without the need for saturating flashes.  相似文献   

7.
8.
Krisztián Cser 《BBA》2007,1767(3):233-243
The mechanism of charge recombination was studied in Photosystem II by using flash induced chlorophyll fluorescence and thermoluminescence measurements. The experiments were performed in intact cells of the cyanobacterium Synechocystis 6803 in which the redox properties of the primary pheophytin electron acceptor, Phe, the primary electron donor, P680, and the first quinone electron acceptor, QA, were modified. In the D1Gln130Glu or D1His198Ala mutants, which shift the free energy of the primary radical pair to more positive values, charge recombination from the S2QA and S2QB states was accelerated relative to the wild type as shown by the faster decay of chlorophyll fluorescence yield, and the downshifted peak temperature of the thermoluminescence Q and B bands. The opposite effect, i.e. strong stabilization of charge recombination from both the S2QA and S2QB states was observed in the D1Gln130Leu or D1His198Lys mutants, which shift the free energy level of the primary radical pair to more negative values, as shown by the retarded decay of flash induced chlorophyll fluorescence and upshifted thermoluminescence peak temperatures. Importantly, these mutations caused a drastic change in the intensity of thermoluminescence, manifested by 8- and 22-fold increase in the D1Gln130Leu and D1His198Lys mutants, respectively, as well as by a 4- and 2.5-fold decrease in the D1Gln130Glu and D1His198Ala mutants, relative to the wild type, respectively. In the presence of the electron transport inhibitor bromoxynil, which decreases the redox potential of QA/QA relative to that observed in the presence of DCMU, charge recombination from the S2QA state was accelerated in the wild type and all mutant strains. Our data confirm that in PSII the dominant pathway of charge recombination goes through the P680+Phe radical pair. This indirect recombination is branched into radiative and non-radiative pathways, which proceed via repopulation of P680* from 1[P680+Ph] and direct recombination of the 3[P680+Ph] and 1[P680+Ph] radical states, respectively. An additional non-radiative pathway involves direct recombination of P680+QA. The yield of these charge recombination pathways is affected by the free energy gaps between the Photosystem II electron transfer components in a complex way: Increase of ΔG(P680* ↔ P680+Phe) decreases the yield of the indirect radiative pathway (in the 22-0.2% range). On the other hand, increase of ΔG(P680+Phe ↔ P680+QA) increases the yield of the direct pathway (in the 2-50% range) and decreases the yield of the indirect non-radiative pathway (in the 97-37% range).  相似文献   

9.
Abstract: [(2S,2′R,3′R)-2-(2′,3′-[3H]Dicarboxycyclopropyl)glycine ([3H]DCG IV) binding was characterized in vitro in rat brain cortex homogenates and rat brain sections. In cortex homogenates, the binding was saturable and the saturation isotherm indicated the presence of a single binding site with a KD value of 180 ± 33 nM and a Bmax of 780 ± 70 fmol/mg of protein. The nonspecific binding, measured using 100 µM LY354740, was <30%. NMDA, AMPA, kainate, l (?)-threo-3-hydroxyaspartic acid, and (S)-3,5-dihydroxyphenylglycine were all inactive in [3H]DCG IV binding up to 1 mM. However, several compounds inhibited [3H]DCG IV binding in a concentration-dependent manner with the following rank order of potency: LY341495 = LY354740 > DCG IV = (2S,1′S,2′S)-2-(2-carboxycyclopropyl)glycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (2S,1′S,2′S)-2-methyl-2-(2-carboxycyclopropyl)glycine > l -glutamate = ibotenate > quisqualate > (RS)-α-methyl-4-phosphonophenylglycine = l (+)-2-amino-3-phosphonopropionic acid > (S)-α-methyl-4-carboxyphenylglycine > (2S)-α-ethylglutamic acid > l (+)-2-amino-4-phosphonobutyric acid. N-Acetyl-l -aspartyl-l -glutamic acid inhibited the binding in a biphasic manner with an IC50 of 0.2 µM for the high-affinity component. The binding was also affected by GTPγS, reducing agents, and CdCl2. In parasagittal sections of rat brain, a high density of specific binding was observed in the accessory olfactory bulb, cortical regions (layers 1, 3, and 4 > 2, 5, and 6), caudate putamen, molecular layers of the hippocampus and dentate gyrus, subiculum, presubiculum, retrosplenial cortex, anteroventral thalamic nuclei, and cerebellar granular layer, reflecting its preferential (perhaps not exclusive) affinity for pre- and postsynaptic metabotropic glutamate mGlu2 receptors. Thus, the pharmacology, tissue distribution, and sensitivity to GTPγS show that [3H]DCG IV binding is probably to group II metabotropic glutamate receptors in rat brain.  相似文献   

10.
11.
12.
13.
The first excited singlet state (S1) of carotenoids (also termed 2Ag) plays a key role in photosynthetic excitation energy transfer due to its close proximity to the S1 (Qy) level of chlorophylls. The determination of carotenoid 2Ag energies by optical techniques is difficult; transitions from the ground state (S0, 1Ag) to the 2Ag state are forbidden (“optically dark”) due to parity (g ← //→ g) as well as pseudo-parity selection rules (− ← //→ −). Of particular interest are S1 energies of the so-called xanthophyll-cycle pigments (violaxanthin, antheraxanthin and zeaxanthin) due to their involvement in photoprotection in plants. Previous determinations of S1 energies of violaxanthin and zeaxanthin by different spectroscopic techniques vary considerably. Here we present an alternative approach towards elucidation of the optically dark states of xanthophylls by near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The indication of at least one π* energy level (about 0.5 eV below the lowest 1Bu+ vibronic sublevel) has been found for zeaxanthin. Present limitations and future improvements of NEXAFS to study optically dark states of carotenoids are discussed. NEXAFS combined with simultaneous optical pumping will further aid the investigation of these otherwise hardly accessible states.  相似文献   

14.
Incubation of erythrocyte ghosts with carbonylcyanide m-chlorophenylhydrazone (CCCP) plus Ca2+ resulted in inactivation of the Ca2+-stimulated ATPase activity. Omission of Ca2+ or lowering of the temperature below 25 °C eliminated the inhibitory effect, as also did the presence of ATP during the incubation. On the other hand, the addition of β-mercaptoethanol did not influence the Ca2+-dependent inhibition by CCCP. Compared with the level of CCCP which uncouples oxidative phosphorylation, a rather high level (0.5 mM) of CCCP was required to inhibit the ATPase activity in ghosts. However, once the inhibition had been accomplished, almost all of the CCCP could be removed from the ghost membrane by washing with a Ca2+-containing solution, without affecting the inhibition of ATPase. If ethylene-glycol-bis(β-aminoethyl acid was included in the washing medium, the inhibition of ATPase was nearly completely reversed by washing. The results indicate that only the Ca2+-stimulated, Mg2+-ATPase was inhibited by 0.5 mM CCCP, while the remaining components of the ATPase activity were slightly inhibited by higher levels of the uncoupler. Low levels of CCCP (0.1 mM) stimulated the Mg2+-ATPase slightly. CCCP was much more specific for the Ca2+-stimulated ATPases than N-(1-naphthyl)maleimide, an unusually effective sulfhydryl reagent, and the requirement of Ca2+ for inactivation was also quite specific.  相似文献   

15.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

16.
Maria Chrysina  Vasili Petrouleas 《BBA》2010,1797(4):487-493
The oxygen evolving complex of Photosystem II undergoes four light-induced oxidation transitions, S0-S1,…,S3-(S4)S0 during its catalytic cycle. The oxidizing equivalents are stored at a (Mn)4Ca cluster, the site of water oxidation. EPR spectroscopy has yielded valuable information on the S states. S2 shows a notable heterogeneity with two spectral forms; a g = 2 (S = 1/2) multiline, and a g = 4.1 (S = 5/2) signal. These oscillate in parallel during the period-four cycle. Cyanobacteria show only the multiline signal, but upon advancement to S3 they exhibit the same characteristic g = 10 (S = 3) absorption with plant preparations, implying that this latter signal results from the multiline configuration. The fate of the g = 4.1 conformation during advancement to S3 is accordingly unknown. We searched for light-induced transient changes in the EPR spectra at temperatures below and above the half-inhibition temperature for the S2 to S3 transition (ca 230 K). We observed that, above about 220 K the g = 4.1 signal converts to a multiline form prior to advancement to S3. We cannot exclude that the conversion results from visible-light excitation of the Mn cluster itself. The fact however, that the conversion coincides with the onset of the S2 to S3 transition, suggests that it is triggered by the charge-separation process, possibly the oxidation of tyr Z and the accompanying proton relocations. It therefore appears that a configuration of (Mn)4Ca with a low-spin ground state advances to S3.  相似文献   

17.
J.A. Van Best  L.N.M. Duysens 《BBA》1975,408(2):154-163
The kinetics of the fluorescence yield Ф of chlorophyll a in Chlorella pyrenoidosa were studied under anaerobic conditions in the time range from 50 μs to several minutes after short (t12 = 30 ns or 5 μs) saturating flashes. The fluorescence yield “in the dark” increased from Ф = 1 at the beginning to Ф ≈ 5 in about 3 h when single flashes separated by dark intervals of about 3 min were given.After one saturating flash, Ф increased to a maximum value (4–5) at 50 μs, then Ф decreased to about 3 with a half time of about 10 ms and to the initial value with a half time of about 2 s. When two flashes separated by 0.2 s were given, the first phase of the decrease after the second flash occurred within 2 ms. After one flash given at high initial fluorescence yield, the 10-ms decay was followed by a 10 s increase to the initial value. After the two flashes 0.2 s apart, the rapid decay was not follewed by a slow increase.These and other experiments provided additional evidence for and extend an earlier hypothesis concerning the acceptor complex of Photosystem II (Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 314, 250–256; Velthuys, B. R. and Amesz, J. (1974) Biochim. Biophys. Acta 333, 85–94): reaction center 2 contains an acceptor complex QR consisting of an electron-transferring primary acceptor molecule Q, and a secondary electron acceptor R, which can accept two electrons in succession, but transfers two electrons simultaneously to a molecule of the tertiary acceptor pool, containing plastoquinone (A). Furthermore, the kinetics indicate that 2 reactions centers of System I, excited by a short flash, cooperate directly or indirectly in oxidizing a plastohydroquinone molecule (A2?). If initially all components between photoreaction 1 and 2 are in the reduced state the following sequence of reactions occurs after a flash has oxidised A2? via System I: Q?R2? + A → Q?R + A2? → QR? + A2?. During anaerobiosis two slow reactions manifest themselves: the reduction of R (and A) within 1 s, presumably by an endogenous electron donor D1, and the reduction of Q in about 10 s when R is in the state R? and A in the state A2?. An endogenous electron donor, D2, and Q? compete in reducing the photooxidized donor complex of System II in reactions with half times of the order of 1 s.  相似文献   

18.
The product of the LPP1 gene in Saccharomyces cerevisiae is a membrane-associated enzyme that catalyzes the Mg2+-independent dephosphorylation of phosphatidate (PA), diacylglycerol pyrophosphate (DGPP), and lysophosphatidate (LPA). The LPP1-encoded lipid phosphatase was overexpressed 681-fold in Sf-9 insect cells and used to examine the enzymological properties of the enzyme using PA, DGPP, and LPA as substrates. The optimum pH values for PA phosphatase, DGPP phosphatase, and LPA phosphatase activities were 7.5, 7.0, and 7.0, respectively. Divalent cations (Mn2+, Co2+, and Ca2+), NaF, heavy metals, propranolol, phenylglyoxal, and N-ethylmaleimide inhibited the PA phosphatase, DGPP phosphatase, and LPA phosphatase activities of the enzyme. The inhibitory effects of N-ethylmaleimide and phenylglyoxal on the LPP1-encoded enzyme were novel properties when compared with other Mg2+-independent lipid phosphate phosphatases from S. cerevisiae and mammalian cells. The LPP1-encoded enzyme exhibited saturation kinetics with respect to the surface concentrations of PA (Km=0.05 mol%), DGPP (Km=0.07 mol%), and LPA (Km=0.08 mol%). Based on specificity constants (Vmax/Km), the order of substrate preference was PA (4.2 units/mg/mol%)>DGPP (3.5 units/mg/mol%)>LPA (1.3 units/mg/mol%). DGPP (Ki=0.12 mol%) was a competitive inhibitor with respect to PA, and PA (Ki=0.12 mol%) was a competitive inhibitor with respect to DGPP. This suggested that the binding sites for these substrates were the same. The enzymological properties of the LPP1-encoded enzyme differed significantly from those of the S. cerevisiae DPP1-encoded lipid phosphatase, a related enzyme that also utilizes PA, DGPP, and LPA as substrates.  相似文献   

19.
In Photosystem II (PSII), the Mn4CaO5-cluster of the active site advances through five sequential oxidation states (S0 to S4) before water is oxidized and O2 is generated. The V185 of the D1 protein has been shown to be an important amino acid in PSII function (Dilbeck et al. Biochemistry 52 (2013) 6824–6833). Here, we have studied its role by making a V185T site-directed mutant in the thermophilic cyanobacterium Thermosynechococcus elongatus. The properties of the V185T-PSII have been compared to those of the WT*3-PSII by using EPR spectroscopy, polarography, thermoluminescence and time-resolved UV–visible absorption spectroscopy. It is shown that the V185 and the chloride binding site very likely interact via the H-bond network linking TyrZ and the halide. The V185 contributes to the stabilization of S2 into the low spin (LS), S?=?1/2, configuration. Indeed, in the V185T mutant a high proportion of S2 exhibits a high spin (HS), S?=?5/2, configuration. By using bromocresol purple as a dye, a proton release was detected in the S1TyrZ?→?S2HSTyrZ transition in the V185T mutant in contrast to the WT*3-PSII in which there is no proton release in this transition. Instead, in WT*3-PSII, a proton release kinetically much faster than the S2LSTyrZ?→?S3TyrZ transition was observed and we propose that it occurs in the S2LSTyrZ?→?S2HSTyrZ intermediate step before the S2HSTyrZ?→?S3TyrZ transition occurs. The dramatic slowdown of the S3TyrZ?→?S0TyrZ transition in the V185T mutant does not originate from a structural modification of the Mn4CaO5 cluster since the spin S?=?3?S3 EPR signal is not modified in the mutant. More probably, it is indicative of the strong implication of V185 in the tuning of an efficient relaxation processes of the H-bond network and/or of the protein.  相似文献   

20.
In the presence of a high concentration of carbonyl cyanide m-chlorophenylhydrazone (CCCP) (4-10(-6) M), the S2 and S3 dark decays are accelerated and become biphasic with a first half-time of 0.6 s. The first fast phase of the decays does not correspond to a simple reduction of S2, S3 back to S0, S1 (i.e. to an acceleration of the deactivation reaction), but to a decrease in the number of oxygen-evolving System II centers. This photo-inactivation produced by CCCP is rapidly reversible in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号