首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids.  相似文献   

2.
C4-Dicarboxylic acids are transported into Salmonella typhimurium by stereospecific systems of both high and low affinity. Succinate and l-malate are accumulated in a tricarboxylic acid cycle mutant as was d(+)-malate in induced wild-type cells. Accumulated dicarboxylates are exchangeable with exogenous dicarboxylates. The trichloroacetic acid cycle dicarboxylates are the best inducers of their own transport. Specific mutants devoid of dicarboxylate transport activity (dct) were isolated and differed from tricarboxylate transport mutants (tct) with respect to growth and transport. A mutant devoid of α-ketoglutarate dehydrogenase was unable to transport dicarboxylic acids but citrate transport remained unaffected. Tricarboxylic acid cycle mutants were markedly dependent on an exogenous energy source for the transport of succinate, proline, or leucine. Dicarboxylate transport was largely inhibited by various metabolic inhibitors but could only be inhibited by N,N'-dicyclohexylcarbodiimide anaerobically. ATPase mutants were unimpaired in their ability to transport succinate or proline aerobically.  相似文献   

3.
The consumption of lactate and amino acids is very important for microbial development and/or aroma production during cheese ripening. A strain of Yarrowia lipolytica isolated from cheese was grown in a liquid medium containing lactate in the presence of a low (0.1×) or high (2×) concentration of amino acids. Our results show that there was a dramatic increase in the growth of Y. lipolytica in the medium containing a high amino acid concentration, but there was limited lactate consumption. Conversely, lactate was efficiently consumed in the medium containing a low concentration of amino acids after amino acid depletion was complete. These data suggest that the amino acids are used by Y. lipolytica as a main energy source, whereas lactate is consumed following amino acid depletion. Amino acid degradation was accompanied by ammonia production corresponding to a dramatic increase in the pH. The effect of adding amino acids to a Y. lipolytica culture grown on lactate was also investigated. Real-time quantitative PCR analyses were performed with specific primers for five genes involved in amino acid transport and catabolism, including an amino acid transporter gene (GAP1) and four aminotransferase genes (ARO8, ARO9, BAT1, and BAT2). The expression of three genes involved in lactate transport and catabolism was also studied. These genes included a lactate transporter gene (JEN1) and two lactate dehydrogenase genes (CYB2-1 and CYB2-2). Our data showed that GAP1, BAT2, BAT1, and ARO8 were maximally expressed after 15 to 30 min following addition of amino acids (BAT2 was the most highly expressed gene), while the maximum expression of JEN1, CYB2-1, and CYB2-2 was delayed (≥60 min).  相似文献   

4.
A mutant of Neurospora crassa (pm-nbg27) was isolated on the basis of its resistance of p-fluoro-phenylalanine on ammonium-deficient Vogel's medium. This mutant was found to be devoid of both conidial and post-conidial (after 180 min of preincubation) transport activity of all amino acids. Genetic analysis of pm-nbg27 by crossing it to wild-type (74A) resulted in the predicted segregants exhibiting transport characteristics of pm-n, pm-b, pm-g, pm-nb, pm-ng, pm-bg and parental types. The above observations confirm the postulated general amino acid permease system as well as a single genetic locus control of that activity.  相似文献   

5.
The bphK gene located in the bph operon of Burkholderia LB400 encodes a protein, BphKLB400, with significant sequence similarity to glutathione-S-transferases (GST), a group of enzymes involved in the detoxification of many endobiotic and xenobiotic substances. Comparison of the amino acid sequence of BphKLB400 with GST from other polychlorinated biphenyl (PCB)-degrading bacteria identified a number of highly conserved amino acids in the C-terminal region of the protein that may be associated with substrate specificity. In this study, two of these conserved amino acids in BphKLB400 (amino acids 152 and 180) were selected for mutation, using site-directed mutagenesis, and substrate specificity assays. BphKLB400 (wildtype and mutant) was over-expressed in Escherichia coli where the bphK gene (wildtype and mutant) is under the expression of a lac promoter and is induced by isopropyl thiogalactoside, and bacterial cell extracts were prepared for GST activity assays. Mutations at amino acids 152 and 180 were shown to affect GST activity of BphKLB400 using 1-chloro-2,4-dinitrobenzene, the model substrate for GST activity assays; 4-chlorobenzoate and 3-chlorobenzoate, intermediates in the polychlorinated biphenyl (PCB) degradation pathway, and 2,4-dichlorophenoxyacetate and atrazine, commonly used herbicides; as substrates. A BphKLB400 mutant (Ala180Pro) is identified in this study as having increased activity towards all substrates tested. This mutant may have potential in bioremediation.  相似文献   

6.
The mechanisms by which adult male Schistosoma mansoni transport amino acids have been investigated using radioactive amino acids during 2-min incubation times. The transport constants (Kt) for mediated uptake of glycine, proline, methionine, arginine, glutamate, and tryptophan were calculated to be 0.60-1.05, 1.67-1.98, 2.0, 0.10-0.35, 0.30-0.50, and 0.5-1.0 mM, respectively. Maximal velocities (Vmax) were 5.5–7.5, 25, 6.4, 1.5-2.0, 2.5, and 3.0–6.0 μmoles absorbed/g worm protein/2 min, respectively. Cysteine is taken up solely by diffusion. Proline uptake is unique in that no significant diffusion component was found. The other amino acids studied were absorbed by diffusion as well as by specific transport systems. In the 2-min incubation periods employed glycine, proline, glutamate, and methionine were not significantly metabolized indicating that the uptake studies using these substrates reflect transport. Metabolism of the other amino acids used in these studies was not examined. The specificity of the transport systems was studied by testing the inhibitory effects of various amino acids on the uptake of each of the amino acids studied. The results suggest the presence of at least five transport systems. There is a highly specific transport locus for proline, and one for acidic amino acids. There are probably at least two transport systems, each of broad and overlapping specificity, for most of the neutral amino acids. Basic amino acids also appear to be taken up by complex transport systems, at least one of which overlaps with the neutral sites. The results are discussed with respect to the nutrition of the parasite and the host-parasite relationship.  相似文献   

7.
Ogawa T 《Plant physiology》1991,96(1):280-284
A clone (HP-1) which transforms the high CO2-requiring mutant (RKb) of Synechocystis PCC6803 defective in inorganic carbon transport to the wild-type (WT) phenotype was isolated from a WT genomic library. The clone contained a 5.4 kilobase-pair DNA insert. Complementation tests with subclones derived from HP-1 allowed the mutation in RKb to be located within 141 base-pair nucleotides. Sequencing of nucleotides in this region revealed an open reading frame encoding a hydrophobic protein consists of 80 amino acids. A defined mutant (M9) constructed by inactivating this putative inorganic carbon transport gene, designated ictA, was unable to transport CO2 and HCO3 into the intracellular inorganic carbon pool. Cloning and sequence analysis of the respective RKb gene revealed a base substitution which generates a stop codon in the middle of ictA.  相似文献   

8.
A.P. Singh  P.D. Bragg 《BBA》1976,423(3):450-461
The uptake of proline and glutamine by cytochrome-deficient cells of Escherichia coli SASX76 grown aerobically on glucose or anaerobically on pyruvate was stimulated by these two substrates. Pyruvate could not stimulate transport in the glucose-grown cells. Uptake of these amino acids energized by glucose was inhibited by inhibitors of the Ca2+, Mg2+-stimulated ATPase such as DCCD, pyrophosphate, and azide, and by the uncouplers CCCP and 2,4-dinitrophenol. Glycerol (or glycerol 3-phosphate) in the presence of fumarate stimulated the transport of proline and glutamine under anaerobic conditions in cytochrome-deficient cells but not in membrane vesicles prepared from these cells although glycerol 3-phosphate-fumarate oxidoreductase activity could be demonstrated in the vesicle preparation. In contrast, in vesicles prepared from cytochrome-containing cells of E. coli SASX76 amino acid transport was energized under anaerobic conditions by this system. Inhibitors of the Ca2+, Mg2+-activated ATPase and uncoupling agents inhibited the uptake of proline and glutamine in cytochrome-deficient cells dependent on the glycerol-fumarate oxidoreductase system. Ferricyanide could replace fumarate as an electron acceptor to permit transport of phenylalanine in cytochrome-deficient or cytochrome- containing cells under anaerobic conditions. It is concluded that in cytochrome-deficient cells using glucose, pyruvate, or glycerol in the presence of fumarate, transport of both proline and glutamine under anaerobic conditions is energized by ATP through the Ca2+, Mg2+-activated ATPase. In cytochrome-containing cells under anaerobic conditions electron transfer between glycerol and fumarate can also drive transport of these amino acids.  相似文献   

9.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   

10.
—The blood-brain barrier transport of amino acids has been measured using the carotid injection technique in the rat. The synthetic amino acids, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH) and α-(methylamino)isobutyric acid (MeAIB), were model substrates in the Ehrlich cell for the leucine (L) and alanine (A) neutral amino acid transport mechanisms, respectively. The uptake (±)b-[carboxyl-14C]BCH at the same rate for the five brain regions tested suggested a similarity between regions for the L transport mechanism. At injectant concentrations of 0·1 mm (similar to naturally occurring aromatic neutral amino acids), BCH was mainly taken up by a saturable mediated transport mechanism (K1, 0·16 mm and Vmax, 0·03/μmol/g per min). At higher concentrations, uptake by a nonsaturable or diffusional mechanism could be demonstrated. When BCH was added as a second amino acid to l -[3-14C]DOPA, the saturable component of l -DOPA transport was significantly inhibited. MeAIB had no measurable effect on the rate of l -DOPA transport. These results suggested that the mediated transport mechanism for l -DOPA at the cerebral capillaries is similar to the l -neutral amino acid transport system.  相似文献   

11.
Thyrotropin-releasing hormone is a tripeptide that consists of 5-oxoproline, histidine, and proline. The peptide is rapidly metabolized by various enzymes. 5-Oxoproline is produced by enzymatic hydrolysis in a variety of peptides. Previous studies showed that 5-oxoproline could become a possible biomarker for autism spectrum disorders. Here we demonstrate the involvement of SLC16A1 in the transport of 5-oxoproline. An SLC16A1 polymorphism (rs1049434) was recently identified. However, there is no information about the effect of the polymorphism on SLC16A1 function. In this study, the polymorphism caused an observable change in 5-oxoproline and lactate transport via SLC16A1. The Michaelis constant (Km) was increased in an SLC16A1 mutant compared with that in the wild type. In addition, the proton concentration required to produce half-maximal activation of transport activity (K0.5, H+) was increased in the SLC16A1 mutant compared with that in the wild type. Furthermore, we examined the transport of 5-oxoproline in T98G cells as an astrocyte cell model. Despite the fact that 5-oxoproline is an amino acid derivative, Na+-dependent and amino acid transport systems scarcely contributed to 5-oxoproline transport. Based on our findings, we conclude that H+-coupled 5-oxoproline transport is mediated solely by SLC16A1 in the cells.  相似文献   

12.
Glucocorticoids (GCs) are counterregulatory hormones with broad effects on the digestion and absorption of dietary carbohydrates, lipids and proteins, but the underlying molecular mechanisms of these effects remain unclear. The present experiment was conducted to investigate the main expression sites of nutrient transporters and the effects of GCs on the gene expression of these transporters in the rabbit small intestine. The results showed that peptide transporter 1 (PepT1), facultative amino acid transporter (rBAT), neutral amino acid transporter (B0AT), excitatory amino acid transporter 3 (EAAT3), sodium-glucose transporter 1 (SGLT1) and glucose transporter 5 (GLUT5) were mainly expressed in the distal segment, glucose transporter 2 (GLUT2) and fatty-acid-binding protein 4 (FATP4) were mainly expressed in the proximal segment and cationic amino acid transporter 1 (CAT1) was mainly expressed in the middle segment of the rabbit small intestine. In addition, we analysed the effects of 3 h (short-term) or 7 days (long-term) dexamethasone (DEX) treatment on the gene expression of most nutrient transporters. The results showed that short-term DEX treatment significantly decreased PepT1, B0AT, EAAT3, rBAT and SGLT1 expressions in all small intestinal segments, while it significantly decreased GLUT2 in the duodenum and FATP4 in the duodenum and ileum (P < 0.05). Long-term DEX treatment also significantly decreased PepT1, CAT1, B0AT, EAAT3, rBAT and SGLT1 in all small intestinal segments and significantly decreased GLUT2 in the jejunum and FATP4 in the ileum (P < 0.05). In conclusion, DEX could decrease the gene expression of most nutrient transporters (except GLUT5) and affect the transport of intestinal amino acids, monosaccharides and fatty acids.  相似文献   

13.
Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using 14C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors.  相似文献   

14.
Tillering in rice (Oryza sativa) is one of the most important agronomic traits that determine grain yields. Previous studies on rice tillering mutants have shown that the outgrowth of tiller buds in rice is regulated by a carotenoid-derived MAX/RMS/D (more axillary branching) pathway, which may be conserved in higher plants. Strigolactones, a group of terpenoid lactones, have been recently identified as products of the MAX/RMS/D pathway that inhibits axillary bud outgrowth. We report here the molecular genetic characterization of d27, a classic rice mutant exhibiting increased tillers and reduced plant height. D27 encodes a novel iron-containing protein that localizes in chloroplasts and is expressed mainly in vascular cells of shoots and roots. The phenotype of d27 is correlated with enhanced polar auxin transport. The phenotypes of the d27 d10 double mutant are similar to those of d10, a mutant defective in the ortholog of MAX4/RMS1 in rice. In addition, 2′-epi-5-deoxystrigol, an identified strigolactone in root exudates of rice seedlings, was undetectable in d27, and the phenotypes of d27 could be rescued by supplementation with GR24, a synthetic strigolactone analog. Our results demonstrate that D27 is involved in the MAX/RMS/D pathway, in which D27 acts as a new member participating in the biosynthesis of strigolactones.  相似文献   

15.
  • 1.1. The transport of amino acids into membrane vesicles prepared from epidermal tentacle tissue of the sea anemone, Anemonia sulcata, depends on an electrochemical potential difference caused, e.g. by sodium chloride gradients.
  • 2.2. Potassium or choline chloride gradients energized the transport less effectively than sodium chloride gradients. Both Na+-ions and Cl-ions were required for the amino acid transport.
  • 3.3. The uphill transport of amino acids along the downhill movement of driver ions (sodium chloride gradient conditions) was characterized by an overshoot; under sodium chloride equilibrium conditions, however, an accumulation of amino acids within the vesicles could not be measured.
  • 4.4. Potassium diffusion potentials in combination with valinomycin indicated that hyperpolarization (vesicle inside negative) and hypopolarization (vesicle inside positive) enhanced or depressed the accumulation of amino acids within the vesicles.
  • 5.5. Being at the phylogenetic base of the Eumetazoa, cnidarians show characteristics for the transmembrane transport of amino acids comparable to those established for vertebrates.
  相似文献   

16.
Characterization of a double mutant, his-6: hgu-4, which is unable to utilize l-histidyl-glycine as a source of histidine has revealed a new locus on linkage group V. The hgu-4 genotype results in a generalized reduced transport activity for amino acids, with a concomitant increased resistance to amino acid analogs. Transport rates and analog resistance for amino acids by this mutant are compared to the previously reported transport deficient mutants fpr-1, nap and un-3.Transport of l-aspartate as a function of temperature is examined in a variety of transport deficient strains in an attempt to explain the mode of action of mutation which pleiotropically affect several genetically and biochemically distinct amino acid transport systems.  相似文献   

17.
The large neutral amino acid transporter type 1, LAT1, is the principal neutral amino acid transporter expressed at the blood-brain barrier (BBB). Owing to the high affinity (low Km) of the LAT1 isoform, BBB amino acid transport in vivo is very sensitive to transport competition effects induced by hyperaminoacidemias, such as phenylketonuria. The low Km of LAT1 is a function of specific amino acid residues, and the transporter is comprised of 12 phylogenetically conserved cysteine (Cys) residues. LAT1 is highly sensitive to inhibition by inorganic mercury, but the specific cysteine residue(s) of LAT1 that account for the mercury sensitivity is not known. LAT1 forms a heterodimer with the 4F2hc heavy chain, which are joined by a disulfide bond between Cys160 of LAT1 and Cys110 of 4F2hc. The present studies use site-directed mutagenesis to convert each of the 12 cysteines of LAT1 and each of the 2 cysteines of 4F2hc into serine residues. Mutation of the cysteine residues of the 4F2hc heavy chain of the hetero-dimeric transporter did not affect transporter activity. The wild type LAT1 was inhibited by HgCl2 with a Ki of 0.56 ± 0.11 μM. The inhibitory effect of HgCl2 for all 12 LAT1 Cys mutants was examined. However, except for the C439S mutant, the inhibition by HgCl2 for 11 of the 12 Cys mutants was comparable to the wild type transporter. Mutation of only 2 of the 12 cysteine residues of the LAT1 light chain, Cys88 and Cys439, altered amino acid transport. The Vmax was decreased 50% for the C88S mutant. A kinetic analysis of the C439S mutant could not be performed because transporter activity was not significantly above background. Confocal microscopy showed the C439S LAT1 mutant was not effectively transferred to the oocyte plasma membrane. These studies show that the Cys439 residue of LAT1 plays a significant role in either folding or insertion of the transporter protein in the plasma membrane.  相似文献   

18.
The effects of organic nitrogen on the metabolism of Clostridium acetobutylicum were investigated in batch fermentations. For this study, amino acids were added to a chemically defined medium in groups from the same biosynthetic pathways. In all cases the addition of amino acids shifted the solvent ratio to higher butanol production at the expense of that of acetone (except for the glutamic acid group) and ethanol (except for histidine). Highest biomass production was obtained from media containing aromatic amino acids and histidine (4.57 g · l−1 and 5.4 g · l−1, respectively). However, the solvent production (ca. 20 g · l−1) and the solvent yield (ca. 33%) in both cases, were similar to those obtained from the synthetic medium. Lower values were obtained from fermentations carried out with other families of amino acids. The strongest inhibition of cell growth (1.13 g · l−1) which related to the lowest solvent production (3.15 g · l−1) was observed on a medium complemented with amino acids of the pyruvic acid group. During the second phase of fermentation, amino acids-complemented media caused a less efficient remetabolization of acetic and butyric acids. Highest production of acids was obtained with the aspartic acid group (7.4 g · l−1). These observations suggest that amino acids can be used as a competitive nitrogen source and also modify the level of enzyme activities involved in acid and solvent production.  相似文献   

19.
A reevaluation of the specificity of system y+, the classical transporter for cationic amino acids is presented. System y+ has been defined as a transporter for cationic amino acids that binds neutral amino acids with lower affinity in the presence of Na+. The discovery of other transporters for cationic amino has suggested that some properties, originally attributed to system y+, may relate to other transport systems. Uncertainty concerns mainly, the affinity for neutral amino acids and the cation dependence of this interaction. Neutral amino acids (13 analogues tested) were found to bind to system y+ in human erythrocytes with very low affinity. Inhibition constants (Kiy, mm) ranged between 14.2 mm and >400 mm, and the strength of interaction was similar in the presence of Na+, K+ or Li+ (145 mm). In choline medium, no interaction was detected up to 20 mm of the neutral amino acid. Guanidinium ion (5 mm, osmolarity maintained with choline) potentiated neutral amino acid binding; the effect was most important in the case of l-norvaline which aligned with guanidinium ion is equivalent to arginine. This suggests cooperative interaction at the substrate site. The specificity of system y+ was shown to be clearly distinct from that of system y+L, a cationic amino acid transporter that accepts neutral amino acids with high affinity in the presence of Na+ and which influenced the classical definition of system y+. Received: 28 September 1998/Revised: 21 December 1998  相似文献   

20.
Viral coat proteins function in virion assembly and virus biology in a tightly coordinated manner with a role for virtually every amino acid. In this study, we demonstrated that the coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) is unusually tolerant of extensive deletions, with continued virion assembly and/or systemic infection found after extensive deletions are made. A series of deletion and point mutations was created in the CP cistron of wild-type and/or green fluorescent protein-tagged WSMV, and the effects of these mutations on cell-to-cell and systemic transport and virion assembly of WSMV were examined. Mutants with overlapping deletions comprising N-terminal amino acids 6 to 27, 36 to 84, 85 to 100, 48 to 100, and 36 to 100 or the C-terminal 14 or 17 amino acids systemically infected wheat with different efficiencies. However, mutation of conserved amino acids in the core domain, which may be involved in a salt bridge, abolished virion assembly and cell-to-cell movement. N-terminal amino acids 6 to 27 and 85 to 100 are required for efficient virion assembly and cell-to-cell movement, while the C-terminal 65 amino acids are dispensable for virion assembly but are required for cell-to-cell movement, suggesting that the C terminus of CP functions as a dedicated cell-to-cell movement determinant. In contrast, amino acids 36 to 84 are expendable, with their deletion causing no obvious effects on systemic infection or virion assembly. In total, 152 amino acids (amino acids 6 to 27 and 36 to 100 and the 65 amino acids at the C-terminal end) of 349 amino acids of CP are dispensable for systemic infection and/or virion assembly, which is rare for multifunctional viral CPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号