首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transition in the temperature dependences of Ca2+ accumulation and ATPase activity occurs at 20 ° C in Sarcoplasmic reticulum membranes. The transition is characterized by an abrupt change in the activation energies for the cation transport process and the associated enzyme activities. The difference in activation energies below and above 20 °C appears to be due to changes in the entropy of activation rather than in the free energy of activation. Also, the temperature dependences of spectral parameters of lipophilic spin-labeled probes and protein-bound spin labels exhibit different behaviors on either side of this temperature. Above 20 °C the lipid matrix probed by the labels exhibits a large increase in molecular motion and a decrease in the apparent ordering of lipid alkyl chains. In addition, labels covalently bound to enzymic reactive sites indicate that the motion of protein side-chains is sensitive to this transition. The results are consistent with an order-disorder transition involving the lipid alkyl chains of the Sarcoplasmic membrane, and with a model in which molecular motion, Ca2+ transport and enzyme activity are limited by local viscosity of hydrophobic regions at temperatures below the transition.Another modification of the Sarcoplasmic reticulum membrane occurs between 37 and 40 °C. It appears that at this temperature the processes governing Ca2+ accumulation and ATPase activity are uncoupled, and Ca2+ accumulation is inhibited, while ATPase activity and passive Ca2+ efflux proceed at rapid rates. Parallel transitions of spectroscopic parameters originating from spin labels, covalently bound to the Sarcoplasmic reticulum ATPase, indicate that the uncoupling is due to a thermally-induced protein conformational change.  相似文献   

2.
Fluorescence anisotropy and average fluorescence lifetime of diphenylhexatriene were measured in artificial lipid membrane vesicles. Within the temperature range investigated (15–52°C) both parameters correlate and can be used interchangeably to measure membrane fluidity. Fluorescence anisotropy of DPH in membrane vesicles of cilia from the protozoan Paramecium tetraurelia decreased slightly from 5 to 37°C, yet, no phase transition was observed. An estimated flow activation energy of approx. 2 kcal/mol indicated that the ciliary membrane is very rigid and not readily susceptible to environmental stimuli. The ciliary membrane contains two domains of different membrane fluidity as indicated by two distinct fluorescence lifetimes of diphenylhexatriene of 7.9 and 12.4 ns, respectively. Ca2+ flux into ciliary membrane vesicles of Paramecium as measured with the Ca2+ indicator dye arsenazo III showed a nonlinear temperature dependency from 5 to 35°C with a minimum around 15°C and increasing flux rates at higher and lower temperatures. The fraction of vesicles permeable for Ca2+ remained unaffected by temperature. The differences in temperature dependency of Ca2+ conductance and membrane fluidity indicate that the Ca2+ permeability of the ciliary membrane is a membrane property which is not directly affected by the fluidity of its lipid environment.  相似文献   

3.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithinphosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers.In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8·10?8 cm2/s at 59°C.Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol% lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy.Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5° to Tt = 62°C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

4.
The Ca2+-activated ATPase from sarcoplasmic reticulum (ATP phosphohydralase, EC 3.6.1.3) has been incorporated into dipalmitoylphosphatidylcholine vesicles. Using laser flash photolysis, the motion of the intrinsic protein Ca2+—ATPase has been studied with a covalently attached eosin probe. The lipid phase was characterized by wide-angle X-ray diffraction whilst the function of the Ca2+—ATPase was determined from its enzymatic activity.The Arrhenius plot for both protein rotational motion and enzymatic activity shows a distinct break at around 28 to 30 °C. Below this temperature no protein rotational motion can be measured, whereas above this temperature the rotational motion parameter increases with an activation energy of about 16 kcal/mol.An X-ray diffraction study with the recombinant shows that, provided the lipid: protein molar ratio is higher than about 50:1, a portion of lipid, which is crystalline and produces a 4.2 Å spacing, starts to melt at temperatures about 28 to 30 °C. This result correlates with the beginning of rotation and a marked increase of enzyme activity of the Ca2+—ATPase and also with freeze-fracture electron microscopy results, which show that on cooling to below 25 °C the proteins aggregate into patches of high protein content leaving remaining areas of pure lipid.  相似文献   

5.
Saturated, unsaturated, and short acyl chain analogues of phosphatidylcholine and phosphatidylcholine and phosphatidylethanolamine were incorporated into a deep heptoseless mutant of Escherichia coli, strain D21F2, and into the parent wild-type strain, K12. Normal and lipid-treated cells or lipid extracts from such cells were labelled with diphenylhexatriene and their fluorescence polarization ratios were measured as a function of temperature. Incorporations of dipalmitoyl analogues of phosphatidylethanolamine and/or phosphatidylcholine in the presence of Ca2+ caused an increase in polarization ratios over a wide temperature range and the appearance of new phase transitions at 25–30°C as measured in whole D21F2 cells. Incorporation into D21F2 of the dioleoyl analogues of these glycerophospholipids under similar conditions had the opposite effect on the polarization ratios and, in the case of dioleoylphosphatidylethanolamine, caused the occurrence of a new phase transition at 20°C. Incorporation of these same lipids in K12 cells, in the presence of Ca2+, caused changes in the polarization ratios similar to those recorded for D21F2 cells when measurements were made on whole cells. Furthermore incorporation of didecanoyl-phosphatidylcholine in wild-type cells, in the presence of Ca2+, substantially decreased the polarization ratio and broadened the phase transition as could be measured with cell preparations. Since Ca2+ stimulates incorporation of lipid, the changes in polarization ratio were always greater when cells had been exposed to exogenous lipid in the presence of this cation. However, even in cells not treated with lipid, Ca2+ caused increases in the polarization ratio and affected the thermotropic structural transitions. The polarization ratios of extracted lipids were always reduced when compared to whole cells. Generally there was an attenuation of any differences in polarization ratio between normal and glycerophospholipid-treated samples. Extracted lipids also displayed broadened phase transitions. The results as a whole indicated that E. coli cells respond to the uptake of lipid and to the presence of Ca2+ by changes in their thermotropic mesomorphic behaviour. These changes reflect to a large extent the fluidity of the incorporated lipid and are exerted on a structural system the phase transitions of which are strongly influenced by the presence of non lipid components in the membrane.  相似文献   

6.
Acholeplasma laidlawii strain A-EF22 was grown in a medium supplemented with 75 μm α-deuterated palmitic acid (16:0-d 2) and 75 μm α-deuterated oleic acid (18:1c-d 2), or with 150 μm 18:1c-d 2. The fatty acids were incorporated into the membrane lipids and 2H NMR spectra were recorded from intact membranes, total lipid extracts, and the combined glucolipid and neutral lipid fractions of a total lipid extract. The lipids in intact membranes form a bilayer structure up to at least 70 °C. The same result was obtained with membranes digested with pronase, which removes a large fraction of the membrane proteins. A reversed hexagonal liquid crystalline (HII) phase was formed below 70 °C by the total lipid extracts hydrated with 20 and 30% (w/w) water; in the presence of 40% (w/w) water only one of the extracts formed an HII phase below 70 °C. The HII phase was formed at higher temperatures with an increasing water content. However, only a lamellar liquid crystalline (L α ) phase was formed up to 70 °C by the total lipid extracts when the water concentrations were 50% (w/w) or higher. The temperature (T LH) for the L α to HII phase transition in the combined glucolipid and neutral lipid fractions was only 2–3 °C lower than for the total lipids, and the phospholipids thus have a very modest influence on the T LH value. Physiologically relevant concentrations of Ca2+ and Mg2+ ions did not affect the phase equilibria of total lipid extracts significantly. It is concluded from comparison with published data that the membrane lipids of the cell wall-less bacterium A. laidlawii have a smaller tendency to form reversed nonlamellar phases than the membrane lipids of three bacterial species surrounded by a cell wall. Received: 10 March 1997 / Accepted: 4 July 1997  相似文献   

7.
The structures of rat liver and heart plasma membranes were studied with the 5-nitroxide stearic acid spin probe, I(1 2,3). The polarity-corrected order parameters (S) of liver and heart plasma membranes were independent of probe concentration only if experimentally determined low I(1 2,3)/lipid ratios were employed. At higher probe/lipid ratios, the order parameters of both membrane systems decreased with increasing probe concentration, and these effects were attributed to enhanced nitroxide radical interactions. Examination of the temperature dependence of approximate and polarity-corrected order parameters indicated that lipid phase separations occur in liver (between 19° and 28°C) and heart (between 21° and 32°C) plasma membranes. The possibility that a wide variety of membrane-associated functions may be influenced by these thermotropic phase separations is considered. Addition of 3.9 mM CaCl2 to I(1 2,3)-labeled liver plasma membrane decreased the fluidity as indicated by a 5% increase in S at 37°C. Similarly, titrating I(1 2,3)-labeled heart plasma membranes with either CaCl2 or LaCl3 decreased the lipid fluidity at 37°C, although the magnitude of the La3+ effect was larger and occurred at lower concentrations than that induced by Ca2+; addition of 0.2 mM La3+ or 3.2 mM Ca2+ increased S by approximately 7% and 5%, respectively. The above cation effects reflected only alterations in the membrane fluidity and were not due to changes in probe–probe interactions. Ca2+ and La3+ at these concentrations decrease the activities of such plasma membrane enzymes as Na+, K+-ATPase and adenylyl cyclase, and it is suggested that the inhibition of these enzymes may be due in part to cation-mediated decreases in the lipid fluidity.  相似文献   

8.
The phase behavior of bovine rod outer segment disk lipids has been investigated using freeze-fracture and 31P nuclear magnetic resonance (NMR) techniques. 31P-NMR spectra of isolated disk membranes were taken as a function of temperature between 25°C and 45°C. The 31P-NMR spectrum characteristic of phospholipid bilayers was observed at all temperatures both in the absence of Ca2+ and in the presence of 10 mM and 50 mM Ca2+. A similar study was performed on lipids isolated from the disk membranes. In the absence of Ca2+ only lamellar phase behavior was observed. In the presence of less than 10 mM Ca2+, however, there was a change in morphology to non-lamellar structures. Removal of the Ca2+ caused the system to reassume the lamellar form.  相似文献   

9.
The ionophores A23187 and X537A have markedly different actions on the MEPP frequency recorded at the frog neuromuscular junction. A23187 has no significant effect at 9–17°C, but causes a small increase in MEPP frequency at 6°C. At 25°C, on the other hand, A23187 causes a marked and progressive rise in MEPP rate. It is suggested that, in spite of increased Ca2+ influx associated with application of the ionophore, the presynaptic terminals can maintain [Ca2+]i constant at 9–17°C, although [Ca2+]i rises at higher and lower temperatures, causing an increase in frequency of MEPPs. As previously reported by Kita and Van der Kloot (5) X537A causes a dramatic increase in MEPP frequency, but it is suggested that its action is more complex and probably involves an increase in Na+ permeability.  相似文献   

10.
The efefct of a number of amine anaesthetics related to procaine on the temperature of lipid phase transitions has been studied using chlorophyll α as a fluorescence probe. The amines cause a reduction in the temperature of the phase transition of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylethanol-amine and of mixtures of these lipids. The binding of charged amines causes a build up of positive charge on the membranes, limiting the binding. Incorporation of negative charge into the lipid bilayers causes a considerable increase in the binding of the charged amines, and the effect is reversed by addition of Ca2+. Anaesthesia is suggested to arise from an increase in the proportion of lipid in the liquid crystalline phase, resulting in a conformational change in the sodium channel. Effects of the tertiary amines on nerve conduction can be understood if the negatively charged lipid in the membrane is concentrated around the sodium channel: positively charged anaesthetics will have a greater effect when applied to the inside of a nerve because of the low Ca2+ concentration inside the nerve.  相似文献   

11.
Ca2+-induced phase separation in phosphatidylserine/phosphatidylethanolamine and phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine model membranes was studied using spin-labeled phosphatidylethanolamine and phosphatidylcholine and compared with that in phosphatidylserine/phosphatidylcholine model membranes studied previously. The phosphatidyl-ethanolamine-containing membranes behaved in qualitatively the same way as did phosphatidylserine/phosphatidylcholine model membranes. There were some quantitative differences between them. The degree of phase separation was higher in the phosphatidylethanolamine-containing membranes. For example, the degree of phase separation in phosphatidylserine/phosphatidylethanolamine membranes containing various mole fractions of phosphatidylserine was 94–100% at 23°C and 84–88% at 40°C, while the corresponding value for phosphatidylserine/phosphatidylcholine membranes was 74–85% at 23°C and 61–79% at 40°C. Ca2+ concentration required for the phase separation was lower for phosphatidylserine/phosphatidylethanolamine than that for phosphatidylserine/phosphatidylcholine membranes; concentration to cause a half-maximal phase separation was 1.4 · 10?7 M for phosphatidylserine-phosphatidylethanolamine and 1.2 · 10?6 M for phosphatidylserine/phosphatidylcholine membranes. The phase diagram of phosphatidylserine/phosphatidylethanolamine membranes in the presence of Ca2+ was also qualitatively the same as that of phosphatidylserine/phosphatidylcholine except for the different phase transition temperatures of phosphatidylethanolamine (17°C) and phosphatidylcholine (?15°C). These differences were explained in terms of a greater tendency for phosphatidylethanolamine, compared to phosphatidylcholine, to form its own fluid phase separated from the Ca2+-chelated solid-phase phosphatidylserine domain.  相似文献   

12.
Using laser interference microscopy and Raman spectroscopy of frog myelinated nerve, it has been found that upon a train of action potentials passing along the fiber, the phase height (refractive index) of paranodal myelin declines while the ordering of fatty-acid tails therein increases. In contrast, at the node of Ranvier where excitation is generated, both the phase height of the axoplasm and the ordering of axolemmal lipid tails decline. It is supposed that such changes in myelin are caused by desorption of membrane-bound Ca2+.  相似文献   

13.
Using Electron Paramagnetic Resonance Spectroscopy, Al3+ was shown to produce a dramatic decrease of membrane lipid fluidity on the microorganism Thermoplasmaacidophilum at a pH > 2. The ability of Al3+ to alter lipid fluidity was enhanced with increasing pH (from 3 to 5). At pH 4, 10?2 M Al3+ increased the lower lipid phase transition by 39°C, and a detectable change was observed with AlCl3 concentrations as low as 10?5 M. The ability of Al3+ to increase the lower lipid phase transition temperature of T.acidophilum is the largest of any cation/lipid interaction yet reported.  相似文献   

14.
《Insect Biochemistry》1982,12(1):115-121
The phase properties and composition of flight muscle mitochondrial membranes were determined in adult male Schistocerca gregaria, acclimated for one month at 31°C and 45°C. Wide angle X-ray diffraction procedures demonstrated a difference of 5°C in the lipid phase trasition temperatures of whole mitochondrial membrane preparations from the two groups of insects; the higher transition temperature was recorded for insects acclimated at 45°C. No statistically significant differences were observed in the ratios of protein:lipid, protein:phospholipid and cholesterol:phospholipid between mitochondria from 31°C- and 45°C-acclimated insects. Elevated temperature also resulted in depressed levels of phosphatidylethanolamine and increased levels of phosphatidylcholine with other phospholipid species remaining unchanged. No differences were observed in the fatty acid composition of the total phospholipid extract.  相似文献   

15.
Chilling (4 °C) induced a prolonged high level of intracellular Ca2+ (Ca2+ overload) and lipid peroxidation in maize (Zea mays L. cv Black Mexican Sweet) cultured cells. However, such Ca2+ overload and enhanced lipid peroxidation were not seen in abscisic acid (ABA)‐treated cells, which had an improved chilling tolerance. A Ca2+ ionophore, A23187, caused Ca2+ overload in both ABA‐treated maize cells and the untreated control, whereas an enhanced lipid peroxidation was detected only in the control. The high level of active oxygen species (AOS) in the control during chilling at 4 °C could be reduced by the presence of lanthanum (La3+), a Ca2+ channel blocker, in the medium. Moreover, both the A23187‐induced lipid peroxidation and AOS production in the control could be reduced by extracellular EGTA, a Ca2+ chelator. Laser‐scanning confocal microscopy revealed that mitochondria were one of the major AOS sources under chilling and during A23187 treatment. In vitro assays showed that superoxide production in isolated maize mitochondria was enhanced by the presence of Ca2+. Findings suggest that chilling‐induced Ca2+ influx in the control triggers a marked generation of AOS, which in turn results in the enhanced lipid peroxidation. The ability of ABA‐treated cells to avoid the chilling‐induced Ca2+ influx may serve as a mechanism that prevents the chilling‐induced oxidative stress and thus results in less chilling injury.  相似文献   

16.
The influence of divalent cations, and pH on the behaviour of phosphatidylserine, derived from egg phosphatidylcholine, has been examined employing 31P-NMR techniques. The addition of Ca2+ results in the observation of a “rigid lattice” 31P-NMR spectra and more than an order of magnitude increase in the spin-lattice relaxation time T1. This corresponds to a strong and specific headgroup immobilization by Ca2+, similar to that observed for anhydrous phosphatidylserine. At pH 7.4 the hydrated sodium salt of (egg) phosphatidylserine adopts the bilayer phase, whereas when the pH is decreased through 3.5 a bilayer to hexagonal (HII) polymorphic phase transition is observed at 50°C, which is unaffected by equimolar cholesterol. The same transition is shown to occur at 37°C for phosphatidylserine isolated from human erythrocytes.  相似文献   

17.
The possible role of PI3‐K in the reversible temperature‐dependent immobilization of fowl sperm motility was investigated by using PI3‐K inhibitor (LY294002) and its inactive analogue (LY303511). The existence of the PI3‐K in fowl spermatozoa was also confirmed by Western blotting analysis. Fowl sperm motility in TES/NaCl buffer remained negligible at the avian body temperature of 40°C but was maintained vigorously when the temperature was decreased to 30°C. At 30°C, no stimulation or inhibition of motility was observed after the addition of 2 mM CaCl2 and 10 µM LY294002 or LY303511: around 70–80% of spermatozoa remained motile. In contrast, at 40°C, the motility of spermatozoa was activated immediately after the addition of Ca2+, but the subsequent addition of LY294002 inhibited the motility again. The addition of LY303511 did not appreciably affect the Ca2+‐supplemented sperm motility, which was maintained for at least 15 min. The ATP concentrations of spermatozoa after the addition of LY294002 + Ca2+ or LY303511 + Ca2+ were almost the same values compared with those of Ca2+ alone at 40°C, suggesting that the addition of LY294002 was not simply affecting membrane damage or inhibiting energy production in the spermatozoa, but may be acting on some part of the motility‐regulating cascade. Immunoblotting of sperm extract using an antibody to PI3‐K revealed a major cross‐reacting protein of 85 kDa, which corresponds to the molecular weight of the subunit of PI3‐K. These results suggest that PI3‐K may be positively involved in the calcium‐regulated maintenance of flagellar movement of fowl spermatozoa at 40°C. Mol. Reprod. Dev. 76: 603–610, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Fourier transform infrared spectroscopy has been used to monitor lipid-protein interaction and protein secondary structure in native and reconstituted sarcoplasmic reticulum vesicles. Studies of the temperature dependence of the CH2 symmetric stretching frequency reveal no cooperative phase transitions in purified sarcoplasmic reticulum or in vesicles reconstituted with dioleoylphosphatidylcholine, although a continuous introduction of disorder into the lipid acyl chains is observed as the temperature is raised. In addition, temperature-dependent changes are observed in the Amide I and Amide II vibrations arising from protein peptide bonds. A comparison of lipid order in native sarcoplasmic reticulum and its lipid extract showed that the introduction of protein is accompanied by a slight increase in lipid order. Reconstitution of Ca2+-ATPase from sarcoplasmic reticulum with dipalmitoylphosphatidylcholine (lipid/protein ratio 30:1), reveals a perturbed lipid melting event broadened and reduced in midpoint temperature from multilamellar lipid vesicles. The onset of melting (27–28°C) correlates well with the onset of ATPase activity and confirms a suggestion (Hesketh, T.R., Smith G.A., Houslay M.D., McGill, K.A., Birdsall, N.J.M., Metcalfe, J.C. and Warren, G.B. (1976) Biochemistry 15, 4145–4151) that a liquid crystalline environment is a requirement for optimal protein function. Finally, Ca2+-ATPase has been reconstituted into binary lipid mixtures of DOPC and acyl-chain perdeuterated DPPC. The effect of protein on the structure and melting behavior of each lipid component was monitored. The protein appears to preferentially interact with the DOPC component.  相似文献   

19.
The physical properties of the plasma membrane of the aquatic phycomycete Blastocladiella emersonii were investigated, in particular the effects of cations on membrane structure. Intact zoospores and lipid extracts were labelled with the spin-labels 5-nitroxystearate (5-NS), 12-nitroxystearate (12-NS), and 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo). Electron spin resonance spectroscopy indicated a total of three breaks in plots of the hyperfine splitting parameter, 2T|, order parameter, S, and the partition coefficient, f, vs. temperature. The first and third break points (TL and TH) were found to be independent of the external K+, Ca2+, or Mg2+ concentrations. They were similar to the break points found in aqueous dispersions of lipid extracts and correlate well with the temperature limits for zoospore viability. In contrast, the middle break point (TM) was markedly influenced by the external Ca2+ concentration. Ca2+ increased TM from 12°C (no Ca2+ added) to 22°C (10 mM Ca2+), i.e., growth temperature. K+ reversed this Ca2+ effect, downshifting TM from 22°C to 10°C. A comparison of the physico-chemical effects of these ions on the membrane, as revealed by the cation-induced shift in TM, is closely correlated with the temperature dependence and physiological effects of cations on zoospore differentiation. This suggests that cations may modify the physical state of the plasma membrane and be involved in regulating the initial changes during zoospore encystment.  相似文献   

20.
Infrared spectra were obtained as a function of temperature for a variety of phospholipid/water bilayer assemblies (80% water by weight) in the 3000-950 cm?1 region. Spectral band-maximum frequency parameters were defined for the 2900 cm?1 hydrocarbon chain methylene symmetric and asymmetric stretching vibrations. Temperature shifts for these band-maximum frequencies provided convenient probes for monitoring the phase transition behavior of both multilamellar liposomes and small diameter single-shell vesiclesof dipalmitoyl phosphatidylcholine/water dispersions. As examples of the effects of bilayer lipid/cholesterol/water (3 : 1 mol ratio) and lipid/cholesterol/amphotericin B/water (3 : 1 : 0.1 mol ratios) vesicles were examined using the methylene stretching frequency indices. In comparison to the pure vesicle form, the transition width of the lipid/cholesterol system increased by nearly a factor of two (to 8°C) while the phase transition temperature remained approximately the same (41° C). For the lipid/cholesterol/amphotericin B system, the phase transition temperature increased by about 4.5° C (to 45.5°C) with the transition width increasing by nearly a factor of four (to ≈ 15°C) above that of the pure vesicles. The lipid/cholesterol/amphotericin B data were interpreted as reflecting the formation below 38°C of a cholesterol/amphotericin B complex whose dissociation at higher temperature (38–60°C range) significantly broades the gel-liquid crystalline phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号