共查询到20条相似文献,搜索用时 20 毫秒
1.
P L Jorgensen 《Biochimica et biophysica acta》1975,401(3):399-415
1. Purified (Na+, K+)-ATPase consisting of membrane fragments was digested with trypsin. The time course of enzyme inactivation was related to the electrophoretic pattern of native and cleaved proteins remaining in the membrane. 2. Differences in both the inactivation kinetics and the cleavage of the large chain (mol. wt 98 000) allow distinction of two patterns of tryptic digestion of (Na+, K+)-ATPase seen with Na+ or K+ in the medium. 3. With K+, the inactivation of (Na+, K+)-ATPase is linear with time in semilogarithmic plots and the activity is lost in parallel with cleavage of the large chain to fragments with molecular weights 58 000 and 48 000. 4. With Na+, the inactivation curves are biphasic. In the initial phase of rapid inactivation, 50% of the activity is lost with minor changes in the composition of the large chain. In the final phase, the large chain is cleaved at a low rate to a fragment with a molecular weight of 78 000. 5. It is concluded that the regions of the large chain exposed in the presence of K+ are distinct from the regions exposed in presence of Na+ and that two conformations of (Na+, K+)-ATPase can be sensed with trypsin, a (t)K-form and a (t)Na-form. 6. Reaction of the (t)K-form with ATP cause transition to the (t)Na-form. Relatively high concentrations of ATP are required and Mg2+ is not necessary. Phosphorylation of (Na+, K+)-ATPase is accompanied by transition from the (t)Na-form to the (t)K-form. Previous kinetic data suggest that these conformational changes are accompanied by shifts in the affinities of the enzyme for Na+ and K+. 相似文献
2.
John H. Collins Bliss Forbush Lois K. Lane Eleanor Ling Arnold Schwartz Anita Zot 《生物化学与生物物理学报:生物膜》1982,686(1):7-12
Highly purified lamb kidney (Na++K+)-ATPase was photoaffinity labeled with the tritiated 2-nitro-5-azidobenzoyl derivative of ouabain (NAB-ouabain). The labeled (Na++K+)-ATPase was mixed with unlabeled carrier enzyme. Two proteolipid (γ1 and γ2) fractions were then isolated by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. The two fractions were interchangeable when rechromatographed on the LH-60 column, suggesting that γ1 is an aggregated form of γ2. The total yield was 0.8–1.5 mol of γ component per mol of catalytic subunit recovered. This indicates that the γ component is present in stoichiometric amounts in the (Na++K+)-ATPase. The proteolipids that were labeled with NAB-ouabain copurified with the unlabeled proteolipids. 相似文献
3.
M L Helmich-de Jong S E van Emst-de Vries J J de Pont 《Biochimica et biophysica acta》1987,905(2):358-370
The (K+ + H+)-ATPase from gastric mucosa has been treated by limited proteolytic digestion with trypsin to study the conformational states of the enzyme. The existence of a K+- and an ATP-form of the enzyme follows from the kinetics of inactivation and from the specific cleavage products. In the presence of K+ the 95 kDa chain is cleaved into two fragments of 56 and 42 kDa, whereas in the presence of ATP fragments of 67 and 35 kDa are formed. When Mg2+ is present during tryptic digestion cleavage products which are specific for both the ATP- and the K+-form of the enzyme are yielded. In analogy to ATP, Mg2+ is able to convert the enzyme from a K+-conformation to a more protected form. Moreover Mg2+ supports the protecting effect of ATP against tryptic inactivation. The K0.5 for ATP is lowered from 1.6 mM (no Mg2+) to 0.2 mM in the presence of 10 mM Mg2+. Mg2+, which in previous studies has been shown to induce a specific conformation, apparently induces a conformation different from the K+-form of the enzyme and has ATP-like effects on the enzyme. In addition it has been found that in the initial rapid phase of the digestion process the K+-ATPase activity is interrupted at a step which is very likely the interconversion of the phosphoenzyme forms E1P and E2P, since neither the K+-stimulated p-nitrophenylphosphatase activity nor the phosphorylation of the enzyme are inhibited in this phase. During the tryptic digestion in the presence of K+ there is a good correlation between the residual ATPase activity and the amount of the catalytic subunit left, suggesting that the latter is homogeneous. After tryptic digestion in the presence of K+, phosphorylation only occurs in the 42 kDa and not in the 56 kDa band. The same experiments in the presence of ATP yield only phosphorylation in the 67 kDa band and not in the 35 kDa band. A provisional model for the structure of the catalytic subunit is given. 相似文献
4.
A method is described for purification of (N+, K+)-ATPase which yields approximately 60 mg of enzyme from 800 g of cardiac muscle with specific activities ranging from 340 to 400 μmol inorganic phosphate/mg protein per h (units/mg). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a major 94 000 dalton polypeptide and four or five lesser components, one of which was a glycoprotein with an apparent molecular weight of 58 000. The enzyme preparation bound 600–700 pmol of [3H]ouabain/mg protein when incubated in the presence of either Mg2+ plus Pi or Mg2+ plus ATP plus Na+, and incorporated more than 600 pmol 32P/mg protein when incubated with γ-32P-labeled ATP in the presence of Mg2+ and Na+. The preparation is approximately 35% pure. 相似文献
5.
Showdomycin [2-(β-d-ribofuranosyl)maleimide] is a nucleoside antibiotic containing a maleimide ring and which is structurally related to uridine. Showdomycin inhibited rat brain (Na+ + K+)-ATPase irreversibly by an apparently bimolecular reaction with a rate constant of about 11.01·mol?1·min?1. Micromolar concentrations of ATP protected against this inhibition but uridine triphosphate or uridine were much less effective. In the presence of K+, 100 μM ATP was unable to protect against inhibition by showdomycin. These observations show that showdomycin inhibits (Na+ + K+)-ATPase by reacting with a specific chemical group or groups at the nucleotide-binding site on this enzyme. Inhibition by showdomycin appears to be more selective for this site than that due to tetrathionate or N-ethylmaleimide. Since tetrathionate is a specific reactant for sulfhydryl groups it appears likely that the reactive groups are sulfhydryl groups. The data thus show that showdomycin is a relatively selective nucleotide-site-directed inhibitor of (Na+ + K+)-ATPase and inhibition is likely due to the reaction of showdomycin with sulfhydryl group(s) at the nucleotide-binding site on this enzyme. 相似文献
6.
Humbert De Smedt Roger Borghgraef Francis Ceuterick Karel Heremans 《生物化学与生物物理学报:生物膜》1979,556(3):479-489
The (Na+ + K+)-stimulated ATPase activity decreases with increasing pressure and a plot of the logarithm of the activity versus pressure shows a change in slope at a defined breakpoint pressure (Pb). The value of Pb increases linearly with increasing temperature. A value of 27.7 ± 0.4 (S.D.) K/1000 atm is obtained. This is in very good agreement with the pressure shift for the melting transitions in phospholipids and aliphatic chains. This strongly indicates that an aliphatic chain melting process is involved in the breakpoint in the Arrhenius plot and pressure dependence of (Na+ + K+)-ATPase. The p-nitrophenyl phosphatase activity of this enzyme also decreases with pressure. In this case the plot of the logarithm of the activity versus pressure is linear without a break-point. The temperature dependence for (Na+ + K+)-ATPase was also studied in the presence of fluidizing drugs: desipramine and benzylalcohol. The presence of these drugs had no effect on the inflection point in the Arrhenius plot. 相似文献
7.
Bent Formby 《生物化学与生物物理学报:生物膜》1973,298(2):291-296
Hydroxylamine inhibits rat brain microsomal (Na+, K+)-ATPase. The inhibition is pH dependent and is reversed by the metal chelator EDTA. No effects of hydroxylamine and EDTA were detectable after treatment of the microsomal particles with the non-ionic detergent Lubrol PX. Hydroxylamine induces particle aggregation as observed by an increase in turbidity and this phenomenon may explain the inhibitory effect of hydroxylamine on the (Na+, K+)-ATPase in terms of a decreased access of substrate and activators to their respective sites. 相似文献
8.
Beef brain microsomes bound approximately 180–220 pmoles of [3H]ouabain per mg of protein in the presence of either MgCl2 and inorganic phosphate or ATP, MgCl2 and NaCl. The ouabain-binding capacity and the ouabain-membrane complex were more stable than the (Na+,K+)-ATPase activity to treatment with agents known to affect the membrane integrity, such as, NaClO4, sodium dodecyl sulfate, , urea. ultrasonication, heating, pH and phospholinase C.The presence of binding sites that were normally inaccessible to ouabain in brain microsomes was demonstrated. These sites appeared after disruption of microsomes with 2 M NaClO4 as evidenced by increased binding of [3H]ouabain. These sites may be buried during the subcellular fractionation procedure and could be accessible in the intact cell. 相似文献
9.
Chick brain microsomal ATPase was strongly inhibited by Cu2+. (Na+ + K+)-ATPase was more susceptible to low levels of Cu2+ than Mg2+-ATPase. The inhibition of (Na+ + K+)-ATPase could be partially protected from Cu2+ in the presence of ATP in the preincubation period. When Cu2+ (6 μM) was preincubated with the enzyme in the absence of ATP, only sulfhydryl-containing amino acids (d-penicillamine and l-cysteine) could reverse the inhibition. At lower concentrations of Cu2+ (< 1.4 μM), in the absence of ATP during preincubation, the inhibition could be completely reversed by the addition of 5 mM l-phenylalanine and l-histidine as well as d-penicillamine and l-cysteine.Kinetic analysis of action of Cu2+ (1.0 μM) on (Na+ + K+)-ATPase revealed that the inhibition was uncompetitive with respect to ATP. At a low concentration of K+ (5 mM), V with Na+ was markedly decreased in the presence of Cu2+ and Km was about twice that of the control. However, at high K+ concentration (20 mM), the Km for Na+ was not affected. At both low (25 mM) and high (100 mM) Na+, Cu2+ displayed non-competitive inhibition of the enzyme with respect to K+.On the basis of these data, we suggest that Cu2+ at higher concentrations (> 6 μM) inactivates the enzyme irreversibly, but that at lower concentrations (< 1.4 μM), Cu2+ interacts reversibly with the enzyme. 相似文献
10.
(Na+,K+)-ATPase is able to catalyze a continuous ATP?Pi exchange in the presence of Na+ and in the absence of a transmembrane ionic gradient. At pH 7.6 the Na+ concentration required for half-maximal activity is 85 mM and at pH 5.1 it is 340 mM. In the presence of optimal Na+ concentration, the rate of exchange is maximal at pH 6.0 and varies with ADP and Pi concentration in the assay medium. ATP?Pi exchange is inhibited by K+ and by ouabain. 相似文献
11.
Garth M. Bray 《生物化学与生物物理学报:生物膜》1973,298(2):239-245
An NaI-extraction procedure was modified to prepare muscle fiber segments with Mg2+-dependent, ouabain-sensitive (Na+ + K+)-ATPase activity. This enzyme was assayed in preparations of skeletal muscle from normal and dystrophic mice. The ouabain-sensitive (Na+ + K+)-ATPase activity of dystrophic muscle preparations was found to be significantly lower than that of control preparations. 相似文献
12.
The membrane (Na+ + Mg2+)-ATPase of Acholeplasma laidlawii B has been solubilized with a Brij-58/sodium deoxycholate mixture and purified by a combination of gel filtration and ion-exchange chromatography. The purified, partially delipidated ATPase has a specific activity of 195 μmol Pi/mg protein per h, which could be enhanced by 25% upon the addition of exogenous phospholipids. The kinetic properties of the purified enzyme are similar to those of the native membrane-bound enzyme, suggesting that it has not been substantially altered during the purification procedure. The enzyme is an assembly of five polypeptide species and its kinetic properties suggest that it is dissimilar to other known ATPases. 相似文献
13.
Ole M. Sejersted 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,586(2):330-340
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain. 相似文献
14.
Ole M. Sejersted 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,717(1):163-174
The effect of l-3,5,3′-triiodothyronine (T3) and thyroxine (T4) on (Na+ + K+)-ATPase activities was examined in rabbit kidneys because in this tissue almost 80% of the metabolism is connected to active sodium transport. T3-receptor concentrations were estimated as 0.62 and 0.80 pmol/mg per DNA in the cortex and outer medulla, respectively. A dose of 0.5 mg T3/kg body weight for 3 days increased basal metabolic rate by almost 60%, and the mitochondrial 1-α-glycerophosphate dehydrogenase activity was increased by 50% in both the cortex and medulla. (Na+ + K+)-ATPase activity in the liver was raised by almost 50%. However, no changes in (Na+ + K+)-ATPase activities or binding sites for [3H]ouabain in either the kidney cortex or medulla could be observed. T4 at 16 mg/kg daily for 14 days was also without effect on renal (Na+ + K+)-ATPase activities. Furthermore, the response to T3 was absent at high sodium excretion rates induced by unilateral nephrectomy and extracellular volume expansion. Thus, despite stimulation of basal metabolic rate and renal 1-α-glycerophosphate dehydrogenase activity by T3 and T4, the (Na+ + K+)-ATPase activity in the rabbit kidney is identical in euthyroid and hyperthyroid states. However, thyroid hormones prevent the normal natriuretic response to extracellular volume expansion. 相似文献
15.
The effects of the solvents deuterated water (2H2O) and dimethyl sulfoxide (Me2SO) on [3H]ouabain binding to (Na+,K+)-ATPase under different ligand conditions were examined. These solvents inhibited the type I ouabain binding to the enzyme (i.e., in the presence of Mg2++ATP+Na+). In contrast, both solvents stimulated type II (i.e., Mg2++Pi-, or Mn2+-dependent) binding of the drug. The solvent effects were not due to pH changes in the reaction. However, pH did influence ouabain binding in a differential manner, depending on the ligands present. For example, changes in pH from 7.05 to 7.86 caused a drop in the rate of binding by about 15% in the presence of Mg2++Na++ATP, 75% in the Mg2++Pi system, and in the presence of Mn2+ an increase by 24% under similar conditions. Inhibitory or stimulatory effects of solvents were modified as various ligands, and their order of addition, were altered. Thus, 2H2O inhibition of type I ouabain binding was dependent on Na+ concentration in the reaction and was reduced as Na+ was elevated. Contact of the enzyme with Me2SO, prior to ligands for type I binding, resulted in a greater inhibition of ouabain binding than that when enzyme was exposed to Na++ATP first and then to Me2SO. Likewise, the stimulation of type II binding was greater when appropriate ligands acted on enzyme prior to addition of the solvent. Since Me2SO and 2H2O inhibit type I ouabain binding, it is proposed that this reaction is favored under conditions which promote loss of H2O, and E1 enzyme conformation; the stimulation of type II ouabain binding in the presence of the solvents suggests that this type of binding is favored under conditions which promote the presence of H2O at the active enzyme center and E2 enzyme conformation. This postulation of a role of H2O in modulating enzyme conformations and ouabain interaction with them is in concordance with previous observations. 相似文献
16.
D.L. Clough 《Life sciences》1984,35(19):1937-1946
Vanadate (VO4?3) produces a positive inotropic effect in rats and also promotes diuresis as well as natriuresis. Although the mechanism(s) of these effects is uncertain, in the kidney, VO4?3 may act through inhibition of (Na++K+)-ATPase activity, whereas in the heart, other or additional mechanisms are likely. Under the assay conditions used in the present study, microsomal (Na++K+)-ATPase activities from rat kidney cortex and medulla were inhibited to a greater extent than was left ventricular (Na++K+)-ATPase activity over a range of VO4?3 concentrations. The apparent dissociation constant for left ventricular (Na++K+)-ATPase (10.95 ± 1.26 × 10?7M VO4?3) was significantly greater than that of (Na++K+)-ATPase from the cortex (3.46±0.96×10?7 M VO4?3) or the medulla (3.32±0.7×10?7M VO4?3, N=6, P<.05) whereas there were no significant differences between the effects of VO4?3 on (Na++K+)-ATPase from the cortex and medulla. The greater inhibition by VO4, of (Na++K+)-ATPase from the cortex relative to that of the left ventricle, occurred over a range of Na+ and K+ concentrations, and K+ enhanced the inhibition by VO4?3 to a greater extent for (Na++K+)-ATPase from the cortex than the left ventricle. These results suggest that renal (Na++K+)-ATPase is more sensitive than left ventricular (Na++K+)-ATPase to inhibition by VO4?3 and would, therefore, be more likely to be modulated 相似文献
17.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site. 相似文献
18.
Joseph D. Robinson 《生物化学与生物物理学报:生物膜》1983,727(1):63-69
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis. 相似文献
19.