首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stink bugs (Hemiptera: Heteroptera: Pentatomidae) are in general robust and restless insects, which makes them difficult to wire for electropenetrograph (EPG) studies. In addition, cuticular lipids may reduce wire effectiveness, and their removal could improve success of wiring. We compared wiring effectiveness for three species of stink bugs, differing in walking behaviour and degree of cuticular waxiness, that is, Piezodorus guildinii (Westwood), Nezara viridula (L.), and Loxa deducta (Walker). Results indicated that removal of cuticular lipids by mechanical abrasion (via sanding) greatly improved attachment success with gold wire. Our hypothesis that heavier and bigger bugs would lose the wire attachment more quickly than lighter and smaller bugs was not confirmed, regardless of the sanding. In contrast, our hypothesis that greater movement of a bug would cause the wire to break more often was supported by extensive testing. Behaviour appears to be more relevant for successful wiring than body weight. We used the sanding and wiring technique to characterize and correlate direct current EPG waveforms for the large and restless stem‐feeding stink bug Edessa meditabunda (Fabricius) on soybean plants. This marks the first published example of pentatomid EPG waveforms. Edessa meditabunda recordings on soybean stems generated eight types of waveforms in three phases and two families, named as follows: non‐probing = Np and Z; pathway phase = Em1; X wave phase = X; ingestion phase, family I = Em2 and Em3; ingestion phase, family N = Em4 and Em5. These eight were described based on their frequencies, relative amplitudes, and level voltages. Histological studies of stylets within salivary sheaths correlated the Em1, Em2, and Em3 waveforms with specific penetration sites. The waveform with the longest duration when feeding was Em2, representing xylem sap ingestion; in addition, waveform Em3 (always preceded by an X wave) was correlated with phloem sap ingestion.  相似文献   

2.
荔枝蝽取食行为的研究   总被引:4,自引:1,他引:4  
刘雨芳  古德祥 《昆虫学报》2000,43(2):152-158
在越冬前和产卵期,荔枝蝽Tessaratoma papillosa Drury在寄主植物-荔枝树的花枝、嫩枝和老枝上都有取食行为。但在这两个不同时期, 其取食行为有显著差异。在越冬前,只有50%~70%的成虫在各类枝条上取食;而处于产卵期的荔枝蝽成虫,在各类枝条上,100%积极取食,且其取食前时间显著短于越冬前在同类枝条上的取食前时间。同一时期在不同枝叶上,荔枝蝽的取食行为也有显著差异。被置于嫩枝叶和花枝上的成虫取食前时间明显短于被置于老枝叶上者;在有选择的情况下,两个时期的成虫都明显地选择在花枝和嫩枝上取食。经分析测定:在不同生长时期,荔枝树的花枝和嫩枝的含水量与含氮量均较老枝叶中的高,可溶性糖含量的变化较大;组织结构也存在明显差异。  相似文献   

3.
The green stink bug, Acrosternum hilare (Say), the southern green stink bug, Nezara viridula (L), and the brown stink bug, Euschistus servus (Say), were predominant phytophagous Pentatomidae detected during 1995-1997 in cotton in South Carolina. These species occurred in similar numbers in conventional and transgenic cotton 'NuCOTN33B', containing the gene for expression of CryIA(c) delta-endotoxin of Bacillus thuringiensis Berliner variety kurstaki. Adult stink bugs moved into cotton from wild and cultivated alternate hosts during July, and reproducing populations usually were detected in cotton from late July into September. Applications of either methyl parathion (0.56 kg [AI]/ha) directed for stink bugs or lambda-cyhalothrin (0.037 kg [AI]/ha) or cyfluthrin (0.056 kg [AI]/ha) for control of cotton bollworm, Helicoverpa zea (Boddie), provided effective control of pentatomids in NuCOTN33B or conventional 'DP5415' and increased yields compared with untreated plots. Fiber quality did not differ among treated or untreated plots of NuCOTN33B. The ground-cloth technique was used to estimate populations of stink bugs, and data indicated that treatment at one bug per 2 m of row adequately protected cotton from yield loss due to stink bug damage. Observations on boll damage indicated that treatment might be necessary if >20-25% reveal internal symptoms of feeding injury during mid- to late season. More detailed damage thresholds should be developed to complement an approach based on population monitoring. This study validated current recommendations for management of pentatomids in cotton, demonstrated the necessity of threshold use for stink bugs in transgenic cultivars expressing endotoxin from B. thuringiensis, and provided insight into further development of management options for pentatomids in the crop.  相似文献   

4.
The southern green stink bug Nezara viridula L. (Heteroptera, Pentatomidae) is highly polyphagous, preferring apically situated seeds and fruits on more than 150 plant species belonging to over 30 plant families all over the world. This forces them to move over highly variable terrains, including plant stems, leaves, pods and buds, which requires efficient attachment. Stink bugs have long slender legs and feet (tarsi) equipped with paired curved claws, paired soft adhesive pads (pulvilli), and flattened lanceolate hairs (setae), which arise ventrally on the first and second foot segments (tarsomeres). To characterize their attachment abilities on well‐defined test substrates, here we comparatively measured and analyzed the traction forces of bugs walking horizontally and vertically on hydrophilic (water attractive) and hydrophobic (water repellent) glass plates and rods. The latter correspond to the geometry of preferred feeding sites of stink bugs in the field. The results show a clear contribution of tarsal flattened lanceolate hairs to the stink bug's attachment. Higher traction forces are generated on a glass rod than on a glass plate, corresponding to up to individual maximum of 43 times the stink bug's body weight. Substrate hydrophobicity promotes the attachment, while the measured forces are up to eight times lower when tarsal hairs are disabled. The combination of smooth and hairy tarsal pads results in a remarkable attachment ability, which enables N. viridula to climb unstable apical plant parts, and supports their invasive behavior and global dispersion.  相似文献   

5.
Brown stink bug, Euschistus servus (Say) (Heteroptera: Pentatomidae), damage on developing corn, Zea mays L., ears was examined in 2005 and 2006 by using eight parameters related to its yield and kernel quality. Stink bug infestations were initiated when the corn plants were at tasseling (VT), mid-silking (R1), and blister (R2) stages by using zero, three, and six in 2005 or zero, one, two, and four bugs per ear in 2006, and maintained for 9 d. The percentage of discolored kernels was affected by stink bug number in both years, but not always affected by plant growth stage. The growth stage effect on the percentage of discolored kernels was significant in 2006, but not in 2005. The percentage of aborted kernels was affected by both stink bug number and plant growth stage in 2005 but not in 2006. Kernel weight was significantly reduced when three E. sercus adults were confined on a corn ear at stage VT or R1 for 9 d in 2005, whereas one or two adults per ear resulted in no kernel weight loss, but four E. servus adults did cause significant kernel weight loss at stage VT in 2006. Stink bug feeding injury at stage R2 did not affect kernel damage, ear weight or grain weight in either year. The infestation duration (9 or 18 d) was positively correlated to the percentage of discolored kernels but did not affect kernel or ear weight. Based on the regression equations between the kernel weight and stink bug number, the gain threshold or economic injury level should be 0.5 bugs per ear for 9 d at stage VT and less for stage R1. This information will be useful in developing management guidelines for stink bugs in field corn during ear formation and early grain filling stages.  相似文献   

6.
The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.  相似文献   

7.
Pyramid traps coated with "industrial safety yellow" exterior latex gloss enamel paint and baited with Euschistus spp. aggregation pheromone, methyl (2E,4Z)-decadienoate captured more stink bugs than all other baited and unbaited trap types in both apple and peach orchards in 2002 and 2003. Commercial sources of dispensers of methyl (2E,4Z)-decadienoate deployed in association with pyramid traps had a significant impact on trap captures. Captures in pyramid traps were four-fold greater when baited with lures from IPM Technologies, Inc. (Portland, OR) than with lures from Suterra (Bend, OR). Variation in yellow pyramid trap color ("industrial safety yellow" and "standard coroplast yellow") and material (plywood, plastic, and masonite) did not affect trap captures. Brown stink bug was the predominant species captured (58%), followed by dusky stink bug, Euschistus tristigmus (Say) (20%); green stink bug, Acrosternum hilare (Say) (14%); and other stink bugs (Brochymena spp. and unidentified nymphs) (8%). Captures in baited pyramid traps were significantly correlated with tree beating samples in both managed and unmanaged apple orchards and with sweep netting samples in the unmanaged apple orchard. However, problems associated with trapping mechanisms of pyramid trap jar tops and jar traps likely resulted in reduced captures in baited traps. Improved trapping mechanisms must be established to develop an effective monitoring tool for stink bugs in mid-Atlantic orchards.  相似文献   

8.
The species composition and abundance of stink bugs (Heteroptera: Pentatomidae) in corn, Zea mays L., was determined in this on-farm study in Georgia. Seven species of phytophagous stink bugs were found on corn with the predominant species being Nezara viridula (L.) and Euschistus servus (Say). All developmental stages of these two pests were found, indicating they were developing on the corn crop. The remaining five species, Oebalus pugnax pugnax (F.), Euschistus quadrator (Rolston), Euschistus tristigmus (Say), Euschistus ictericus (L.), and Acrosternum hilare (Say), were found in relatively low numbers. Adult N. viridula were parasitized by the tachinid parasitoid Trichopoda pennipes (F.). There was a pronounced edge effect in distribution of stink bugs in corn. Population dynamics of N. viridula and E. servus were different on early and late-planted corn. Oviposition by females of both stink bug species occurred in mid-to-late-May and again mid-to-late-June in corn, regardless of planting date. In early planted fields, if stink bug females oviposited on corn in mid-July, the resulting nymphs did not survive to the adult stage in corn because ears were close to physiological maturity and leaves were senescing. Density of stink bug adults in early planted corn was relatively low throughout the growing season. In late-planted corn, females of both stink bug species consistently laid eggs in mid-to-late-July on corn with developing ears. This habitat favored continued nymph development, and the resulting adult population reached high levels. These results indicate that corn management practices play a key role in the ecology of stink bugs in corn agroecosystems and provide information for designing management strategies to suppress stink bugs in farmscapes with corn.  相似文献   

9.
In southeastern United States farmscapes, corn, Zea mays L., is often closely associated with peanut, (Arachis hypogaea L.), cotton, (Gossypium hirsutum L.), or both. The objective of this 3-yr on-farm study was to examine the influence of corn on stink bugs (Heteroptera: Pentatomidae), Nezara viridula (L.), and Euschistus servus (Say), in subsequent crops in these farmscapes. Adults of both stink bug species entered corn first, and seasonal occurrence of stink bug eggs, nymphs, and adults indicated that corn was a suitable host plant for adult survival and nymphal development to adults. Stink bug females generally oviposited on cotton or peanut near the interface, or common boundary, of the farmscape before senescence of corn, availability of a new food, or both. Adult stink bugs dispersed from crop to crop at the interface of a farmscape in response to senescence of corn, availability of new food, or both. In corn-cotton farmscapes, adult stink bugs dispersed from senescing corn into cotton to feed on bolls (fruit). In corn-peanut farmscapes, adult stink bugs dispersed from senescing corn into peanut, which apparently played a role in nymphal development in these farmscapes. In the corn-cotton-peanut farmscape, stink bug nymphs and adults dispersed from peanut into cotton in response to newly available food, not senescence of peanut. Stink bug dispersal into cotton resulted in severe boll damage. In conclusion, N. viridula and E. servus are generalist feeders that exhibit edge-mediated dispersal from corn into subsequent adjacent crops in corn-cotton, corn-peanut, and corn-peanut-cotton farmscapes to take advantage of suitable resources available in time and space for oviposition, nymphal development, and adult survival. Management strategies for crops in this region need to be designed to break the cycle of stink bug production, dispersal, and expansion by exploiting their edge-mediated movement and host plant preferences.  相似文献   

10.
We observed the seed-carrying and feeding behavior of a stink bug, Adrisa magna, under manipulated conditions in the laboratory. The bugs were most active at night but also fed on seeds under shelter during the daytime. When adults were housed on their own, they often left these shelters with the seeds in them and reused the abandoned seeds later. When several adults were introduced into a container, we found adults feeding communally and sucking on seeds abandoned by other bugs. It is suggested that seed-carrying behavior allows for communal feeding between conspecific bugs in heterogeneous environments. Received: April 19, 1999 / Accepted: May 22, 2000  相似文献   

11.
Stink bugs are recognized as pests of several economically important crops, including cotton, soybean and a variety of tree fruits. The Cyranose 320 was used for the classified investigation of stink bug. Stink bugs including males and females of the southern green stink bugs, Nezara viridula, were collected from crop fields around College Station, TX. Results show that the released chemicals and chemical intensity are both critical factors, which determine the rate that the Cyranose 320 correctly identified the stink bugs. The Cyranose 320 shows significant potential in identifying stink bugs, and can classify stink bug samples by species and gender.  相似文献   

12.
Experiments were conducted in an environmental growth chamber to determine the movement and feeding preferences of Nezara viridula (L.) and Euschistus serous (Say) on individual cotton plants. Fifth instars were caged by species on a single cotton plant (FM 9063 B2F) containing four discrete boll sizes ranging from 1.1 to 3.0 cm in diameter over a period of 5 d per replication. Two digital video cameras were simultaneously focused on each of the four bolls per plant to visually confirm stink bug resting and movement. During the study, a total of 4,080 h of video footage was recorded and analyzed. Results showed that N. viridula and E. serous did not prefer the exact same boll sizes. In a trial with eight stink bugs per plant, N. viridula spent more time on the three larger boll classes, 1.6-2.0, 2.1-2.5, and 2.6-3.0 cm. In a separate trial with one stink bug per plant, N. viridula spent more time on the larger boll classes while E. serous exhibited the strongest preference for 1.1-1.5 and 2.1-2.5 cm bolls. N. viridula moved more often than E. serous and both species moved more often during photophase compared with scotophase. Regardless of species or number of bugs released, bolls in the smallest boll size class fell off the plant about 3 d after the bugs were released. These results confirm that scouts who are estimating stink bug damage should select bolls in the 2.1-2.5 cm diameter boll size class.  相似文献   

13.
Diabrotica spp. (Coleoptera: Chrysomelidae) beetles and southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae), are pests on corn, Zea mays L., and soybean, Glycine max (L.) Merr., as well as on cucurbits. Control of these insects has depended on chemicals. An alternative to chemical control is the use of biologicals. Use of bacteria, fungi, viruses, pheromones, and metabolites to control these insects can potentially improve resistance management and reduce pesticide use. Other than Bacillus thuringiensis Berliner, few bacteria have been discovered that are lethal to either of these pests. Chromobacterium subtsugae Martin et al., a newly described bacterium that is known to be toxic to Colorado potato beetle, Leptinotarsa decemlineata (Say), larvae, was found to be toxic to both diabroticite adult beetles and southern green stink bug adults. In laboratory assays, toxins produced by these bacteria kill 80-100% of the adults of two species of diabroticite beetles, Diabrotica undecimpunctata howardi Barber and Diabrotica virgifera virgifera LeConte, and 100% of southern green stink bug adults within 6 d. For green stink bug, live bacteria were not needed for toxicity.  相似文献   

14.
Adult brown, Euschistus servus (Say); green, Acrosternum hilare (Say); and southern green, Nezara viridula (L.), stink bugs were collected from soybean, Glycine max (L.) Merr., in fall 2001 and 2002 near Stoneville, MS, and Eudora, AR. A glass-vial bioassay was used to determine LC50 values for the three species of stink bugs for the pyrethroids bifenthrin, cypermethrin, cyfluthrin, lambda-cyhalothrin, and permethrin, and the organophosphates acephate, dicrotophos, malathion, and methyl parathion. Results confirmed findings of other researchers that the brown stink bug was less susceptible to pyrethroid and organophosphate insecticides than were green and southern green stink bugs. The susceptibility of all three stink bug species to the insecticides tested was very similar at both test locations. The study established baseline insecticide mortality data from two locations in the mid-South for three stink bug species that are pests of soybean and cotton, Gossypium spp. Data from the tests are valuable for future use in studies on resistance and in resistance monitoring programs.  相似文献   

15.
  1. Pest management of stink bugs (Hemiptera: Pentatomidae) in soybean [Glycine max (L.) Merr.], corn (Zea mays L.) and cotton (Gossypium spp.) agroecosystems has become a major concern in several countries of the Americas.
  2. In this review, we report an overview on geographical distribution, injury, damage and methods used to control (plant resistance mechanisms, biological control) the most important stink bugs in the Americas, with an emphasis on Brazil, the implications of the trend towards decreased susceptibility of stink bug populations to insecticides and the current difficulties of the management of these insect pests.
  3. Currently, the Neotropical brown stink bug Euschistus heros (Fabricius) is less susceptible to organophosphate insecticides than in the past. A slight reduction in E. heros susceptibility to pyrethroids and, to a lesser extent, to neonicotinoids has also been observed. In addition, the green‐belly stink bug [Dichelops melacanthus (Dallas)] is more tolerant to the three classes of insecticides (neonicotinoids, organophosphates and pyrethroids) than E. heros.
  4. Metabolic detoxification is involved in organophosphate, neonicotinoid and pyrethroid differences in susceptibility. Restricted availability of insecticides with different modes of action could favour the selection of resistant phenotypes in stink bug populations.
  相似文献   

16.
Delayed maturity in soybean, Glycine max (L.) Merr., occurred in response to infestation by southern green stink bug, Nezara viridula (L.), in 4 yr of field studies. Maturity delays followed stink bug infestation that occurred only during the pod set and filling stages (R3-R5.5), and infestations at R3-4 and R5 resulted in delayed maturity more consistently than did infestation at R5.5. Infestation levels of six stink bugs per 0.3 m of row for 7-14 d generally were required to delay soybean maturity. The greatest impact on seed yield and quality parameters followed stink bug infestations that occurred during R3-R5.5, which corresponded closely with the periods of infestation that resulted in delayed maturity. If both delayed maturity and yield reduction are considered, the pod elongation through late pod filling stages were most critical for protecting soybeans from southern green stink bugs.  相似文献   

17.
Cotton plants were infested with brown stink bug, Euschistus servus (Say), to define cotton boll age classes (based on heat unit accumulation beyond anthesis) that are most frequently injured during each of the initial 5 wk of flowering. Bolls from each week were grouped into discrete age classes and evaluated for the presence of stink bug injury. Brown stink bug injured significantly more bolls of age class B (approximately 165-336 heat units), age class C (approximately 330-504 heat units), and age class D (approximately 495-672 heat units) during the initial 3 wk in both years and in week 5 in 2002 compared with other boll ages. Generally, the frequency of injured bolls was lowest in age class A (< or = 168 heat units) during these periods. The preference by brown stink bug for boll age classes B, C, and D within a week was similar when ages were combined across all 5 wk. Based on these data, bolls that have accumulated 165.2 through 672 heat units beyond anthesis (approximately 7-27-d-old) are more frequently injured by brown stink bug when a range of boll ages are available. The boll ages in our studies corresponded to a boll diameter of 1.161-3.586 cm with a mid-range of 2.375 cm. A general protocol for initiating treatments against stink bugs is to sample bolls for evidence of injury as an indicator of presence of infestations in cotton. Sampling bolls within a defined range, which is most likely to be injured, should improve the precision of this method in detecting economic stink bug infestations in cotton.  相似文献   

18.
We investigated the effects of weed hosts on stink bug density and damage (Euschistus conspersus Uhler and Thyanta pallidovirens Stal), and a nectar bearing plant on natural enemies of stink bugs in the Sacramento Valley of California. Stink bug density and fruit damage were evaluated in processing tomatoes adjacent to weedy and cultivated borders. The density of E. conspersus was significantly greater in tomatoes adjacent to weedy borders in July but not during August/September. Thyanta pallidovirens was less abundant overall (19%), but was found in significantly greater densities adjacent to cultivated borders in July but not in August/September. Mean percent fruit damage by stink bugs was greater adjacent to the weedy border than the cultivated border, but this difference was not significant. Stink bug egg parasitism and generalist predator density were evaluated in fresh market tomatoes adjacent to a sweet alyssum (Lobularia maritima L.) border and an unplanted control border at three sites. Egg parasitism was significantly greater in the alyssum treatment for the 9–12 September sampling period. Jalysus wickhami VanDuzee (Hemiptera: Berytidae) density was significantly greater in the alyssum treatment in mid‐June. No other significant differences in predator populations were detected. Results of these two studies show that habitat manipulations have the potential to reduce densities of E. conspersus in tomato, the first step in developing a farmscape management plan for stink bug control.  相似文献   

19.
Greenhouse and laboratory studies were conducted to evaluate feeding activity and superficial damage to soybean seed by the brown-winged stink bug, Edessa meditabunda (F.), and the Neotropical brown stink bug, Euschistus heros (F.). Soybean plants (cv. BRS 282), at R6 stage of development were used. Thirty pairs of each species were used individually for 48?h. Two daily observations (9:00?AM and 3:00?PM) were taken to record the number of bugs (feeding/resting) on plant parts. Harvested seeds imbibed in tetrazolium solution were photographed for measurement of the damaged surface. Adult E. meditabunda significantly preferred soybean stems (19.7 bugs) to pods (2.7). Feeding/resting was similar at 9:00?AM (mean number of 28.0 bugs) and 3:00?PM (24.3). Euschistus heros equally fed/stayed on stems (7.3 bugs) and pods (6.9), although most bugs (12.3) remained on the cage net; feeding/resting on all plant structures amounted to 13.7 bugs at 9:00?AM and 17.7 bugs at 3:00?PM. Amylase activity was greater for E. heros (41.61?±?0.89?U/mg) and almost none for E. meditabunda (2.35?±?0.14?U/mg). The superficial damage to seeds was significantly greater for E. meditabunda (22. 9?mm2) compared to E. heros (12.5?mm2). However, E. meditabunda caused less shrinkage of the seed tegument, while E. heros damage was deeper and seeds showed reduction in size.  相似文献   

20.
Nezara viridula L. and Euschistus servus (Say) are the predominant species of phytophagous stink bugs on corn, Zea mays L., in Georgia. Oebalus pugnax pugnax (F.) occurs in relatively low numbers, and the predatory stink bug Podisus maculiventris (Say) is commonly found. Limited information is available on natural biological control of these four stink bug species in Georgia corn fields; therefore, a 6-yr study of parasitism and predation of their eggs was initiated in 2003. Naturally occurring stink bug eggs were parasitized by six scelionid species, Trissolcus basalis (Wollaston), T. thyantae Ashmead, T. brochymenae (Ashmead), T. euschisti (Ashmead), Telenomus podisi Ashmead, Telenomus calvus Johnson, and one encyrtid species, Ooencyrtus sp. T. basalis was the most prevalent parasitoid of N. viridula, parasitizing E. servus and P. maculiventris eggs at low levels. T. podisi, the predominant parasitoid species emerging from eggs of E. servus and P. maculiventris, also parasitized O. p. pugnax eggs exclusively and parasitized N. viridula eggs at low levels. T. euschisti and T. thyantae parasitized E. servus egg masses. T. brochymenae parasitized eggs of both E. servus and P. maculiventris. T. calvus parasitized only P. maculiventris eggs. The same species of egg parasitoids that parasitized naturally occurring eggs of N. viridula and E. servus parasitized sentinel eggs of these bugs, except that no T. calvus and Ooencyrtus sp. were obtained from sentinel eggs, and T. thyantae and T. brochymenae emerged from sentinel eggs of N. viridula. Generally, parasitization of an egg mass was either greater than or equal to predation of sentinel eggs of N. viridula and E. servus. However, on some dates in late June and July, predation of sentinel egg masses was numerically approximately twice as high as parasitism. Results indicate stink bug egg parasitoids and predators are significant factors in the natural biological control of stink bugs in corn fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号