首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Because mitochondrial dysfunction occurs relatively early in the course of nephrotoxicity associated with the aminoglycoside antibiotic, gentamicin, the acute in vitro effects of gentamicin on renal cortical mitochondrial respiration were studied. Gentamicin produced stimulation of State 4 rates and inhibition of State 3 and DNP-uncoupled rates with pyruvate-malate or succinate as substrates. The stimulation of State 4 respiration was not blocked by oligomycin. Both the stimulation of State 4 and inhibition of State 3 were profoundly dependent on the Na+ and K+ contents of the incubation medium, were potentiated by the presence of EDTA, and were reversed by Mg2+. These results suggested that gentamicin's effects on mitochondrial respiration were due to alterations in the interaction of Na+ and K+ with the inner mitochondrial membrane at Mg2+-sensitive sites.  相似文献   

2.
J.O. Tsokos  S. Bloom 《BBA》1976,423(1):42-51
Spontaneously beating myocardial fragments prepared by mechanical disaggregation have hyperpermeable sarcolemmae. Such preparations were used to study mitochondrial function in situ. The myocardial fragments suspended in a phosphate-buffered salt solution containing 1–3 mM MgCl2 showed a low rate of oxygen uptake. Addition of succinate, pyruvate plus malate or glutamate was followed by an increase in the rate of O2 uptake. Addition of ADP to fragments engaged in State 4 respiration was followed by initiation of more rapid State 3 respiration, with respiratory control ratios routinely greater than 3 for succinate and glutamate. If the fragments were suspended in the same medium containing 3 mM ATP (a medium in which contractile activity occurs), State 3 was initiated upon addition of substrate. The suspension medium used in these experiments contained about 8 μM calcium as contamination. Addition of calcium chloride to give a final concentration of 0.14 to 0.57 mM stimulated State 4 respiration of the myocardial fragments. In contrast, similar additions made during State 3 inhibited respiration. The maximum degree of inhibition brought respiration close to the State 4 rate. If calcium was added prior to ADP, respiratory stimulation by the nucleotide was diminished. Respiratory function of myocardial fragments and of mitochondria isolated from them was similar in terms of response to substrate, ADP, and calcium addition in State 4. Response to calcium in State 3 was different in that inhibition was long-lived only at low [Pi] in the case of mitochondria, but at low or high [Pi] in the case of the fragments.  相似文献   

3.
K.S. Cheah  J.C. Waring 《BBA》1983,723(1):45-51
The effect of trifluoperazine on the respiration of porcine liver and skeletal muscle mitochondria was investigated by polarographic and spectroscopic techniques. Low concentrations of trifluoperazine (88 nmol/mg protein) inhibited both the ADP- and Ca2+-stimulated oxidation of succinate, and reduced the values of the respiratory control index and the ADPO and Ca2+O ratio. High concentrations inhibited both succinate and ascorbate plus tetramethyl-p-phenylenediame (TMPD) oxidations, and uncoupler (carbonyl cyanide p-trifluromethoxyphenylhydrazone) and Ca2+-stimulated respiration. Porcine liver mitochondria were more sensitive to trifluoperazine than skeletal muscle mitochondria. Trifluoperazine inhibited the electron transport of succinate oxidation of skeletal muscle mitochondria within the cytochrome b-c1 and cytochrome c1-aa3 segments of the respiratory chain system. 233 nmol trifluoperazine/mg protein inhibited the aerobic steady-state reduction of cytochrome c1 by 92% with succinate as substrate, and of cytochrome c and cytochrome aa3 by 50–60% with ascorbate plus TMPD as electron donors. Trifluoperazine can thus inhibit calmodulin-independent reactions particularly when used at high concentrations.  相似文献   

4.

Background

One of the central debates in membrane bioenergetics is whether proton-dependent energy coupling mechanisms are mediated exclusively by protonic transmembrane electrochemical potentials, as delocalized pmf, ΔµH+, or by more localized membrane surface proton pathways, as interfacial pmf, ΔµHS.

Methods

We measure ?pHS in rat liver mitoplasts energized by respiration or ATP hydrolysis by inserting pH sensitive fluorescein-phosphatidyl-ethanolamine(F-PE) into mitoplast surface.

Results

In the presence of rotenone and Ap5A, succinate oxidation induces a bi-phasic interfacial protonation on the mitoplast membranes, a fast phase followed by a slow one, and an interfacial pH decrease of 0.5 to 0.9 pH units of mitoplast with no simultaneous pH changes in the bulk. Antimycin A, other inhibitors or uncouplers of mitochondrial respiration prevent the decrease of mitoplast ?pHS, supporting that ΔµHS is dependent and controlled by energization of mitoplast membranes. A quantitative assay of ATP synthesis coupled with ?pHS of mitoplasts oxidizing succinate with malonate titration shows a parallel correlation between ATP synthesis, State 4 respiration and ?pHS, but not with ?ΨE.

General Significance

Our data substantiate ?pHS as the primary energy source of pmf for mitochondrial ATP synthesis. Evidence and discussion concerning the relative importance and interplay of ?pHS and ?ΨE in mitochondrial bioenergetics are also presented.  相似文献   

5.
《BBA》1986,850(1):64-71
NAD+ supplied to purified Solanum tuberosum mitochondria caused progressive inhibition of succinate oxidation in State 3. This inhibition was especially pronounced at alkaline pH and at low succinate concentrations. Glutamate counteracted the inhibition. NAD+ promoted oxaloacetate accumulation in State 3; supplied oxaloacetate inhibited O2 uptake in the presence of succinate much more severely in State 3 than in State 4. NAD reduction linked to succinate oxidation by ATP-dependent reverse electron transport was likewise inhibited by oxaloacetate. We conclude that NAD+-induced inhibition of succinate oxidation is due to an inhibition of succinate dehydrogenase resulting from increased accumulation of oxaloacetate generated from malate oxidation via malate dehydrogenase. The results are discussed in the context of the known regulatory characteristics of plant succinate dehydrogenase.  相似文献   

6.
—A reproducible model of subacute methyl mercury (MeHg) intoxication was developed in the adult rat following the daily intragastric administration of 10 mg methyl mercury/kg body wt. Synaptosomes isolated from animals during the latent phase of mercury neurotoxicity (6-10 days) demonstrated no significant change in respiratory control, State 3, State 4, or 2,4-dinitrophenol stimulated respiration with succinate, glutamate or pyruvate plus malate. During the neurotoxic phase, a significant decline in respiratory control was evident with all substrates. Cerebellar synaptosomes revealed qualitatively similar but quantitatively greater inhibition of 2,4-dinitrophenol stimulated respiration during the latent and neurotoxic phases with glutamate. In vitro studies of synaptosome respiration, oxidative phosphorylation and respiratory control with 5-15 μm -methyl mercury revealed a stimulation of initial State 4 respiration, loss of RCI, inhibition of State 3 but no change in the gramicidin or 2,4-dinitrophenol uncoupled rate supported by pyruvate-malate. Phosphate did not relieve the State 3 inhibition. At 25 μm -methyl mercury and above, considerable inhibition of electron transfer occurred. At this concentration, cytochrome c oxidase was inhibited 50%. Isosmotic replacement of medium KC1 by mannitol reduced the MeHg stimulation of State 4 respiration but had no effect on MeHg inhibition of ADP stimulated respiration. Half-maximal stimulation of State 4 respiration by MeHg occurred at [K]+⋍ 6 mm . These findings are compatible with an energy-linked methyl mercury induced cation translocation across the synaptosome (mitochondrial) membrane.  相似文献   

7.
Ekblad  Alf  Högberg  Peter 《Plant and Soil》2000,219(1-2):197-209
The main aim of this study was to test various hypotheses regarding the changes in 13C of emitted CO2 that follow the addition of C4-sucrose to the soil of a C3-ecosystem. It forms part of an experimental series designed to assess whether or not the contributions from C3-respiration (root and microbial) and C4-respiration (microbial) to total soil respiration can be calculated from such changes. A series of five experiments, three on sieved (root-free) mor-layer material, and two in the field with intact mor-layer (and consequently with active roots), were performed. Both in the experiments on sieved mor-layer and the field experiments, we found a C4-sucrose-induced increase in C3-respiration that accounted for between 30% and 40% of the respiration increase 1 h after sucrose addition. When the course of C3-, C4- and total respiration was followed in sieved material over four days following addition of C4-sucrose, the initially increased respiration of C3-C was transient, passing within less than 24 h. In a separate pot experiment, neither ectomycorrhizal Pinus sylvestrisL. roots nor non-mycorrhizal roots of this species showed respiratory changes in response to exogenous sucrose. No shift in the 13C of the evolved CO2 after adding C3-sucrose to sieved mor-layer material was found, confirming that the sucrose-induced increase in respiration of endogenous C was not an artefact of discrimination against 13C during respiration. Furthermore, we conclude that the C4-sucrose induced transient increase in C3-respiration is most likely the result of accelerated turnover of C in the microbial biomass. Thus, neither respiration of mycorrhizal roots, nor processes discriminating against 13C were likely sources of error in the field. The estimated 13C of evolved soil CO2 in three field experiments lay between –25.2 and –23.6. The study shows that we can distinguish between CO2 evolved from microbial mineralisation of added C4-sucrose, and CO2 evolved from endogenous carbon sources (roots and microbial respiration).  相似文献   

8.
Peter Nicholls 《BBA》1976,430(1):30-45
1. Beef heart mitochondria have a cytochrome c1 : c : aa3 ratio of 0.65 : 1.0 : 1.0 as isolated; Keilin-Hartree submitochondrial particles have a ratio of 0.65 : 0.4 : 1.0. More than 50% of the submitochondrial particle membrane is in the ‘inverted’ configuration, shielding the catalytically active cytochrome c. The ‘endogenous’ cytochrome c of particles turns over at a maximal rate between 450 and 550 s?1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300–400 s?1, at 28° – 30°C, pH 7.4.2. Ascorbate plus N,N,N′,N′-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5–547 nm and 550–556.5 nm, respectively.3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate+N,N,N′,N′-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1c reduction step greater than 103 s?1.4. The greater apparent response of the caa3 electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the c1c step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux.  相似文献   

9.
A. Telfer  J. Barber 《BBA》1978,501(1):94-102
1. Ionophore A23187 induces uncoupling of potassium ferricyanide-dependent O2 evolution by envelope-free chloroplasts and oxaloacetate-dependent O2 evolution by intact chloroplasts. The half maximal concentration (C12) for stimulation of oxygen evolution in both cases is approximately 4 μM · 100 μg chlorophyll · ml?1.2. Ionophore A23187 also induces inhibition of CO2 and 3-phosphoglycerate-dependent O2 evolution by intact chloroplasts in the presence of 3 mM MgCl2. The half maximal concentrations (C12) for inhibition of O2 evolution are 3 μM and 5 μM respectively · 100 μg?1 chlorophyll · ml?1.3. A very high concentration of ionophore A23187 (10 μM · 20 μg?1 chlorophyll · ml?1) plus 0.1 mM EDTA lowers the fluorescence yield of intact chloroplasts suspended in a cation-free medium in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating loss of divalent cation from the diffuse double layers of the thylakoid membranes.4. These results are discussed in relation to ionophore A23187-induced divalent cation/proton exchange at both the thylakoid and the envelope membranes of intact chloroplasts.  相似文献   

10.
Enzymatic reduction of iron oxide by fungi   总被引:8,自引:5,他引:3       下载免费PDF全文
The occurrence of the iron-reducing phenomenon among some common fungi was studied. Results indicated that (i) the reduction of ferric iron to the ferrous state by fungi seems to be restricted to nitrate reductase-inducible strains such as Actinomucor repens, Alternaria tenuis, Fusarium oxysporum, and F. solani and (ii) the amount of dissolved ferrous iron may be reduced progressively by increasing the amount of nitrate added to the medium. Compared with a complex medium (Sabouraud medium), less iron became reduced if NO3- was the only nitrogen source (Czapek Dox medium). These data strongly support the view that ferric iron is acting as an hydrogen acceptor in respiration, competing with nitrate for electrons that are mediated by the enzyme nitrate reductase. The significance of this property from an ecological viewpoint is discussed.  相似文献   

11.
Using Mössbauer resonance spectroscopy of 57Fe, we have determined the nature and distribution of major iron compounds in the magnetotactic bacterium Aquaspirillum magnetotacticum. In addition to magnetite (Fe3O4), cells contained a low-density hydrous ferric oxide, a high-density hydrous ferric oxide (ferrihydrite), and ferrous iron. Analysis at different temperatures of whole cells harvested early and late in growth, of mutant cells unable to synthesize magnetite, and of cell fractions enriched in 57Fe indicated that Fe3O4 precipitation resulted from partial reduction of the high-density hydrous ferric oxide precursor.  相似文献   

12.
Microalgae are extensively used in the remediation of heavy metals like iron. However, factors like toxicity, bioavailability and iron speciation play a major role in its removal by microalgae. Thus, in this study, toxicity of three different iron salts (FeSO4, FeCl3 and Fe(NO3)3) was evaluated towards three soil microalgal isolates, Chlorella sp. MM3, Chlamydomonas sp. MM7 and Chlorococcum sp. MM11. Interestingly, all the three iron salts gave different EC50 concentrations; however, ferric nitrate was found to be significantly more toxic followed by ferrous sulphate and ferric chloride. The EC50 analysis revealed that Chlorella sp. was significantly resistant to iron compared to other microalgae. However, almost 900 μg g?1 iron was accumulated by Chlamydomonas sp. grown with 12 mg L?1 ferric nitrate as an iron source when compared to other algae and iron salts. The time-course bioaccumulation confirmed that all the three microalgae adsorb the ferric salts such as ferric nitrate and ferric chloride more rapidly than ferrous salt, whereas intracellular accumulation was found to be rapid for ferrous salts. However, the amount of iron accumulated or adsorbed by algae, irrespective of species, from ferrous sulphate medium is comparatively lower than ferric chloride and ferric nitrate medium. The Fourier transform infrared spectroscopy (FTIR) analysis shows that the oxygen atom and P?=?O group of polysaccharides present in the cell wall of algae played a major role in the bioaccumulation of iron ions by algae.  相似文献   

13.
Glutamate-supported respiration in mitochondria is inhibited by palmityl-CoA in the presence of carnitine. Palmityl-CoA-induced lag phase and depressed state 3 rates increase with increasing ADP. Palmityl-CoA inhibition of state 3 respiration with glutamate shows an increased I50 for palmityl-CoA (three to fourfold) when ADP increases and carnitine is present. ADP alone has a small effect. Glutamate-supported respiration is more profoundly inhibited by palmityl-CoA (+carnitine) than palmityl-CoA oxidation. With palmityl-CoA (+ carnitine) alone, the I50 for palmityl-CoA is two-to threefold greater than when glutamate is also present. Active respiration with palmityl-CoA as substrate demonstrates a 2.5-fold greater apparent affinity for ADP than when glutamate is also present. The kinetics are competitive in both cases. Palmitylcarnitine, above 30 μm, produces inhibition of glutamate-supported respiration, concomitant with mitochondrial swelling and eventual lysis. At 15 μm palmitylcarnitine (minimal swelling), succinate (+ rotenone)-supported respiration decreases with a decrease in Kapp for ADP; no effect of 15–20 μm palmitylcarnitine on glutamate-supported respiration is observed. However, palmityl-CoA (+ carnitine)-inhibited respiration with glutamate is further decreased with 15 and 20 μm palmitylcarnitine, i.e., by 13 and 29%, respectively. Inhibition is competitive with ADP. With 3 μm palmitylCoA and 20 μm palmitylcarnitine, a decrease in carnitine (1.5 to 0.25 mm) decreases the apparent Ki for palmityl-CoA from 2.6 to 1.8 μm. The results suggest that glutamate increases the palmityl-CoA available to inhibit adenine nucleotide transport. Inhibition may take place external to the inner membrane. Competition of carnitine and palmitylcarnitine for substrate sites may explain the decreased apparent Ki for palmityl-CoA as carnitine decreases.  相似文献   

14.
The lethal action of streptonigrin on strains of Escherichiacoli is greatly enhanced by citrate (10?2 M). Desferrioxamine (2×10?4 M), when added with streptonigrin and citrate, eliminates the citrate enhancement. These observations point to a role for iron in the bactericidal mechanism of streptonigrin. Extracellular citrate is known to promote the acquisition of iron by E.coli by delivering it as a ferric citrate complex to a specific transport apparatus on the cell envelope. Therefore, it may promote action of streptonigrin by increasing the intracellular concentration of available iron. Desferrioxamine, which forms a much stronger complex with ferric ion than does citrate, would be expected to suppress the ferric citrate effect, and this was observed.  相似文献   

15.
Inge Romslo 《BBA》1975,387(1):69-79
1. The energy-dependent accumulation of iron by isolated rat liver mitochondria, respiring on endogenous substrates, is strongly dependent on the efficiency of energy coupling in the respiratory chain as measured by respiratory control with ADP and the endogenous energy dissipation. The accumulation reached a saturation level at respiratory control with ADP values (with succinate as the substrate) of approx. 4.0.2. In the presence of exogenous substrate, the energy-dependent accumulation of iron was markedly reduced, primarily due to binding of iron as carboxylate complexes having less favourable dissociation constants than the iron(III)-sucrose complex(es).3. The effect of added ATP was at least 2-fold, i.e. that of providing energy and that of chelating iron. When the mitochondria respired on endogenous substrate, the energy-dependent accumulation of iron increased at low concentrations of ATP, whereas higher concentrations (> 50 μM) gradually inhibited the uptake.4. Energization of the mitochondria by the generation of an artificial K+ gradient across the inner membrane with valinomycin in a K+-free medium increased the energy-dependent accumulation of iron.  相似文献   

16.
There are five oxidation-reduction states of horseradish peroxidase which are interconvertible. These states are ferrous, ferric, Compound II (ferryl), Compound I (primary compound of peroxidase and H2O2), and Compound III (oxy-ferrous). The presence of heme-linked ionization groups was confirmed in the ferrous enzyme by spectrophotometric and pH stat titration experiments. The values of pK were 5.87 for isoenzyme A and 7.17 for isoenzymes (B + C). The proton was released when the ferrous enzyme was oxidized to the ferric enzyme while the uptake of the proton occurred when the ferrous enzyme reacted with oxygen to form Compound III. The results could be explained by assuming that the heme-linked ionization group is in the vicinity of the sixth ligand and forms a stable hydrogen bond with the ligand.The measurements of uptake and release of protons in various reactions also yielded the following stoichiometries: Ferric peroxidase + H2O2 → Compound I, Compound I + e? + H+ → Compound II, Compound II + e? + H+ → ferric peroxidase, Compound II + H2O2 → Compound III, Compound III + 3e? + 3H+ → ferric peroxidase.Based on the above stoichiometries and assuming the interaction between the sixth ligand and heme-linked ionization group of the protein, it was possible to picture simple models showing structural relations between five oxidation-reduction states of peroxidase. Tentative formulae are as follows: [Pr·Po·Fe-(II) $?PrH+·Po·Fe(II)] is for the ferrous enzyme, Pr·Po·Fe(III)OH2 for the ferric one, Pr·Po·Fe(IV)OH? for Compound II, Pr(OH?)·Po+·Fe(IV)OH? for Compound I, and PrH+·Po·Fe(III)O2? for Compound III, in which Pr stands for protein and Po for porphyrin. And by Fe(IV)OH?, for instance, is meant that OH? is coordinated at the sixth position of the heme iron and the formal oxidation state of the iron is four.  相似文献   

17.
Delocalized chemiosmotic coupling of oxidative phosphorylation requires that a single-value correlation exists between the extent of Δ\?gmH+ and the kinetic parameters of respiration and ATP synthesis. This expectation was tested experimentally in nigericin-treated plant mitochondria in single combined experiments, in which simultaneously respiration (in State 3 and in State 4) was measured polarographically, FΔψ (which under these conditions was equivalent to Δ\?gmH+) was evaluated potentiometrically from the uptake of tetraphenylphosphonium+ and the rate of phosphorylation was estimated from the transient depolarization of mitochondria during State 4-State 3-State 4 transitions. The steady-state rates of the different biochemical reactions were progressively inhibited by specific inhibitors active with different modalities on various steps of the energy-transducing process: succinate respiration was inhibited competitively with malonate or noncompetitively with antimycin A, or by limiting the rate of transport into the mitochondria of the respiratory substrate with phenylsuccinate; Δ\?gmH+ was dissipated by uncoupling with increasing concentrations of valinomycin; ADP phosphorylation was limited with oligomycin. The results indicate generally that when the rate of respiratory electron flow is decreased, a parallel inhibition of the rate of phosphorylation is also observed, while very limited effects can be detected on the extent of Δ\?gmH+. This behavior is in marked contrast to the effect of uncoupling where the decreased rate of ATP synthesis is clearly due to energy limitation. Extending previous observations in bacterial photosynthesis and in respiration by animal mitochondria and submitochondrial particles the results indicate, therefore, that respiration tightly controls the rate of ATP synthesis, with a mechanism largely independent of Δ\?gmH+. These data cannot be reconciled with a delocalized chemiosmotic coupling model.  相似文献   

18.
An NADH dehydrogenase possessing a specific activity 3–5 times that of membrane-bound enzyme was obtained by extraction of Acholeplasma laidlawii membranes with 9.0 % ethanol at 43 °C. This dehydrogenase contained only trace amounts of iron (suggesting an uncoupled respiration), a flavin ratio of 1 : 2 FAD to FMN, and 30–40 % lipid. Its resistance to sedimentation is probably due to the high flotation density of the lipids. It efficiently utilized ferricyanide, menadione and dichlorophenol indophenol as electron acceptors, but not O2, ubiquinone Q10 or cytochrome c. Lineweaver-Burk plots of the dehydrogenase were altered to linear functions upon extraction with 9.0 % ethanol. A secondary site of ferricyanide reduction could not be explained by the presence of cytochromes, which these membranes lack. In comparison to other respiratory chain-linked NADH dehydrogenases in cytochrome-containing respiratory chains, this dehydrogenase was characterized by similar Km's with ferricyanide, dichlorophenol indophenol, menadione as electron acceptors, but considerably smaller V's with ferricyanide, dichlorophenol indophenol, menadione as electron acceptors, and smaller specific activities. It was not stimulated or reactivated by the addition of FAD, FMN, Mg2+, cysteine or membrane lipids, and was less sensitive to respiratory inhibitors than unextracted enzyme. The ineffectiveness of ADP stimulation on O2 uptake, the insensitivity to oligomycin and the very low iron content of A. laidlawii membranes were considered in relation to conservation of energy by these cells. Some kinetic properties of the dehydrogenation, the uniquely high glycolipid content and apparently uncoupled respiration at Site I were noteworthy characteristics of this NADH dehydrogenase from the truncated respiratory chain of A. laidlawii.  相似文献   

19.
The effect of exogenous cytochrome c on respiration rate of the rat and human heart mitochondria was assessed in situ, using permeabilized fibers. It was (i) much more pronounced in State 2 and 4 than in State 3 with all the respiratory substrates (pyruvate+malate, succinate, palmitoyl-CoA+carnitine and octanoyl-L-carnitine), (ii) different with different substrates, (iii) much higher after ischemia in both metabolic states, particularly in the case of succinate oxidation compared to pyruvate+malate, (iv) the highest in State 4 with succinate as a substrate. Similar results were obtained with the isolated rat and rabbit heart mitochondria. The differences in the degree of stimulation of mitochondrial respiration by cytochrome c and, thus, sensitivity of cytochrome c test in evaluation of the intactness/injury of outer mitochondrial membrane are probably determined by the differences in the cytochrome c role in the control of mitochondrial respiration in the above-described conditions.  相似文献   

20.
Multiple cytochromes b in Mycobacterium phlei   总被引:1,自引:0,他引:1  
Electron transport particles from M. phlei contain at least 3 different active forms of cytochrome b, one reduced by NADH, with a λmax at 563 nm (bN563), and the other two reduced by either succinate or NADH, with λmax at 559 and 563 nm (bS559) and (bS563). Low temperature λmax for cytochrome b reduction with NADH or succinate are described. During steady state only bS563 was observed with succinate. In the presence of ATP, succinate reduced an increased amount of a b563. A branching of the NAD+-linked pathway and a convergence at the level of cytochrome c is suggested, with only one branch accessible to succinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号