首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic membrane vesicles with either normal or inverted orientation were prepared from Escherichia coli. The lactose transport activity of these vesicle preparations was compared. The parameters measured were net efflux, counterflux, and K+/valinomycin-induced active uptake of lactose. With membrane vesicles derived from both wild-type and cytochrome-deficient strains the right-side-out and inverted membrane preparations showed similar rates of lactose flux in all assays. According to these criteria, the activity of the β-galactoside transport protein is inherently symmetrical.One major difference was observed between the native and inverted vesicle preparations: the inverted vesicles had approximately twice the specific activity of native vesicles in the counterflux and K+/valinomycin-induced uptake assays. This difference can be largely ascribed to the presence in the normal vesicle preparation of vesicles with a high passive permeability to lactose. Such vesicles are apparently absent from the inverted vesicle preparations.  相似文献   

2.
A mutant strain of Escherichia coli in which β-glucoside transport is resistant to catabolite inhibition by methyl α-glucoside was characterized. The mutation was probably within the gene, bglC, coding for the β-glucoside enzyme II. The mutant organism is shown to transport the β-glucoside substrate, salicin, in preference to methyl α-glucoside or fructose. Salicin also caused inducer exclusion of lactose in the mutant strain.  相似文献   

3.
The aggregation of β-amyloid (Aβ) peptide from its monomeric to its fibrillar form importantly contributes to the development of Alzheimer’s disease. Here, we investigated the effects of Escherichia coli maltose binding protein (MBP), which has been previously used as a fusion protein, on Aβ42 fibrillization, in order to improve understanding of the self-assembly process and the cytotoxic mechanism of Aβ42. MBP, at a sub-stoichiometric ratio with respect to Aβ42, was found to have chaperone-like inhibitory effects on β-sheet fibril formation, due to the accumulation of Aβ42 aggregates by sequestration of active Aβ42 species as Aβ42-MBP complexes. Furthermore, MBP increased the lag time of Aβ42 polymerization, decreased the growth rate of fibril extension, and suppressed Aβ42 mediated toxicity in human neuroblastoma SH-SY5Y cells. It appears that MBP decreases the active concentration of Aβ42 by sequestering it as Aβ42-MBP complex, and that this sequestration suppresses ongoing nucleation and retards the growth rate of Aβ42 species required for fibril formation. We speculate that inhibition of the growth rate of potent Aβ42 species by MBP suppresses Aβ42-mediated toxicity in SH-SY5Y cells.  相似文献   

4.
Whole genome sequence of Neosartorya fischeri NRRL181 revealed four putative GH1 β-glucosidases (BGLs). One BGL, NfBGL595 was successfully expressed and characterized. DNA sequence analysis revealed an open reading frame of 1590 bp, encoding a polypeptide of 529 amino acid residues. The gene was cloned in pET28a and overexpressed in Escherichia coli. The purified recombinant BGL showed high levels of catalytic activity, with Vmax of 1693 U mg-protein−1 and a Km of 2.8 mM for p-nitrophenyl-β-d-glucopyranoside (pNPG). The optimal temperature and pH for enzyme activity were 40 °C and 6.0, respectively. The enzyme exhibited broad substrate specificity towards aryl glycosides including pNP-mannose, pNP-galactose, pNP-xylose, and pNP-cellobioside. A homology model of NfBGL595 was constructed based on the X-ray crystal structure of Trichoderma reesei BGL2. Molecular dynamics simulation studies of the enzyme with the pNPG and cellobiose, shed light on the substrate specificity of N. fischeri BGL595 only towards aryl glycoside.  相似文献   

5.
Fast and reliable epidemiological typing methods for identifying outbreaks and epidemic strains of extended spectrum β-lactamase (ESBL) producing Enterobacteriaceae are urgently needed. The DiversiLab system (DL) has been proposed for these purposes. We compared DL to pulsed-field gel electrophoresis (PFGE) on a national collection of ESBL-producing Escherichia coli (n = 258; of which 226 isolates were typeable with PFGE) and Klebsiella pneumoniae (n = 48) isolated in 2007. For E. coli the Wallace coefficients showed that the probability of two isolates of the same DL type having the same PFGE type was only 19.8% and the probability of two isolates of the same PFGE type having the same DL type was 90.4%. For K. pneumoniae the Wallace coefficients showed that the probability of two isolates of the same DL type having the same PFGE type was 100% and the probability of two isolates of the same PFGE type having the same DL type was 79%, indicating that for this K. pneumoniae strain collection DL was slightly more discriminatory. Only four of 48 isolates had discordant results with the two methods. In E. coli 42% of the isolates were sequence type 131 and these isolates were related at > 95% similarity with DL and at ≥ 60% similarity with PFGE. In summary, for E. coli DL performed well in identifying isolates related by PFGE, but overestimated the genetic relatedness in the studied collection. This indicates that DL could be a primary screening method for excluding unrelated isolates. Isolates shown to be related must be confirmed with a more discriminatory method. For K. pneumoniae, DL discriminated well but overestimated the diversity of the isolates compared to PFGE, assuming a risk of missing possible genetic relatedness.  相似文献   

6.
A gating mechanism of the β-barrel-forming outer membrane protein G (OmpG) from Escherichia coli was recently presented. The mechanism was based on X-ray structures revealed from crystals grown from solubilized OmpG at both neutral pH and acidic pH. To investigate whether these conformations represent the naturally occurring gating mechanism, we reconstituted OmpG in native E. coli lipids and applied high-resolution atomic force microscopy. The reconstituted OmpG molecules assembled into both monomers and dimers. Single monomeric and dimeric OmpG molecules showed open channel entrances at pH 7.5 and at room temperature. The extracellular loops connecting the β-strands that form the transmembrane β-barrel pore exhibited elevated structural flexibility. Upon lowering the pH to 5.0, the conformation of OmpG molecules changed to close the extracellular entrance of their channel. It appears that one or more of the extracellular loops collapsed onto the channel entrance. This conformational change was fully reversible. Our data confirm that the previously reported gating mechanism of OmpG occurs at physiological conditions in E. coli lipid membranes.  相似文献   

7.
8.
Cytochrome-f (553–4) was isolated from mass cultures of the six dinoflagellates, Amphidinium carterae (2 strains), Cachonina niei, Glenodinium sp., Peridinium foliaceum, Gonyaulax polyedra, and one chrysophyte, Cricospherae carterae. Sonication of whole cell suspensions released the water-soluble protein, which was then purified by vacuum dialysis, salt fractionation and column chromatography. Reduced forms of isolated cytochromes had absorption maxima at 270–6, 316–8, 415–6, 522–3 and 553–4 rim. The α-absorption peak was asymmetrical. MW's, as determined by SDS polyacrylamide gel electrophoresis, ranged from 10 700 to 13 500. Amino acid analysis of C. niei cytochrome-f revealed 102 residues, with a composite MW of 10836. Purified cytochromes had isoelectric points ranging from 3·45 to 4·25 and oxidation-reduction potentials ranging from +0·374 to +0·351 V.  相似文献   

9.
The thermo-tolerant yeast Pichia etchellsii produced two cell-wall-bound inducible β-glucosidases, BGLI (molecular mass 186 kDa) and BGLII (molecular mass 340 kDa), which were purified by a simple, three-step method, comprising ammonium sulfate precipitation, ion-exchange and hydroxyapatite chromatography. The two enzymes exhibited a similar pH and temperature optima, inhibitory effect by glucose and gluconolactone, and stability in the pH range of 3.0–9.0. Placed in family 3 of glycosylhydrolase families, BGLI was more active on salicin, p-nitrophenyl β-d-glucopyranoside and alkyl β-d-glucosides whereas BGLII was most active on cellobiose. kcat and KM values were determined for a number of substrates and, for BGLI, it was established that the deglycosylation step was equally effective on aryl- and alkyl-glucosides while the glycosylation step varied depending on the substrate used. This information was used to synthesize alkyl-glucosides (up to a chain length of C10) using dimethyl sulfoxide stabilized single-phase reaction microenvironment. About 12% molar yield of octyl-glucoside was calculated based on a simple spectrophotometric method developed for its estimation. Further, detailed comparison of properties of the enzymes indicated these to be different from the previously cloned β-glucosidases from this yeast.  相似文献   

10.
The O-linked β-N-acetylglucosamine (O-GlcNAc) post-translational modification is an important, regulatory modification of cytosolic and nuclear enzymes. To date, no 3-dimensional structures of O-GlcNAc-modified proteins exist due to difficulties in producing sufficient quantities with either in vitro or in vivo techniques. Recombinant co-expression of substrate protein and O-GlcNAc transferase in Escherichia coli was used to produce O-GlcNAc-modified domains of human cAMP responsive element-binding protein (CREB1) and Abelson tyrosine-kinase 2 (ABL2). Recombinant expression in E. coli is an advantageous approach, but only small quantities of insoluble O-GlcNAc-modified protein were produced. Adding β-N-acetylglucosaminidase inhibitor, O-(2-acetamido-2-dexoy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), to the culture media provided the first evidence that an E. coli enzyme cleaves O-GlcNAc from proteins in vivo. With the inhibitor present, the yields of O-GlcNAc-modified protein increased. The E. coli β-N-acetylglucosaminidase was isolated and shown to cleave O-GlcNAc from a synthetic O-GlcNAc-peptide in vitro. The identity of the interfering β-N-acetylglucosaminidase was confirmed by testing a nagZ knockout strain. In E. coli, NagZ natively cleaves the GlcNAc-β1,4-N-acetylmuramic acid linkage to recycle peptidoglycan in the cytoplasm and cleaves the GlcNAc-β-O-linkage of foreign O-GlcNAc-modified proteins in vivo, sabotaging the recombinant co-expression system.  相似文献   

11.

Background

Animal neurotoxin peptides are valuable probes for investigating ion channel structure/function relationships and represent lead compounds for novel therapeutics and insecticides. However, misfolding and aggregation are common outcomes when toxins containing multiple disulfides are expressed in bacteria.

Methods

The β-scorpion peptide toxin Bj-xtrIT from Hottentotta judaica and four chaperone enzymes (DsbA, DsbC, SurA and FkpA) were co-secreted into the oxidizing environment of the Escherichia coli periplasm. Expressed Bj-xtrIT was purified and analyzed by HPLC and FPLC chromatography. Its thermostability was assessed using synchrotron radiation circular dichroism spectroscopy and its crystal structure was determined.

Results

Western blot analysis showed that robust expression was only achieved when cells co-expressed the chaperones. The purified samples were homogenous and monodisperse and the protein was thermostable. The crystal structure of the recombinant toxin confirmed that it adopts the native disulfide connectivity and fold.

Conclusions

The chaperones enabled correct folding of the four-disulfide-bridged Bj-xtrIT toxin. There was no apparent sub-population of misfolded Bj-xtrIT, which attests to the effectiveness of this expression method.

General significance

We report the first example of a disulfide-linked scorpion toxin natively folded during bacterial expression. This method eliminates downstream processing steps such as oxidative refolding or cleavage of a fusion-carrier and therefore enables efficient production of insecticidal Bj-xtrIT. Periplasmic chaperone activity may produce native folding of other extensively disulfide-reticulated proteins including animal neurotoxins. This work is therefore relevant to venomics and studies of a wide range of channels and receptors.  相似文献   

12.
Cystathionine γ-synthase (CGS) and cystathionine β-lyase (CBL) share a common structure and several active-site residues, but catalyze distinct side-chain rearrangements in the two-step transsulfuration pathway that converts cysteine to homocysteine, the precursor of methionine. A series of 12 chimeric variants of Escherichia coli CGS (eCGS) and CBL (eCBL) was constructed to probe the roles of two structurally distinct, ~ 25-residue segments situated in proximity to the amino and carboxy termini and located at the entrance of the active-site. In vivo complementation of methionine-auxotrophic E. coli strains, lacking the genes encoding eCGS and eCBL, demonstrated that exchange of the targeted regions impairs the activity of the resulting enzymes, but does not produce a corresponding interchange of reaction specificity. In keeping with the in vivo results, the catalytic efficiency of the native reactions is reduced by at least 95-fold, and α,β versus α,γ-elimination specificity is not modified. The midpoint of thermal denaturation monitored by circular dichroism, ranges between 59 and 80 °C, compared to 66 °C for the two wild-type enzymes, indicating that the chimeric enzymes adopt a stable folded structure and that the observed reductions in catalytic efficiency are due to reorganization of the active site. Alanine-substitution variants of residues S32 and S33, as well as K42 of eCBL, situated in proximity to and within, respectively, the targeted amino-terminal region were also investigated to explore their role as determinants of reaction specificity via positioning of key active-site residues. The catalytic efficiency of the S32A, S33A and the K42A site-directed variants of eCBL is reduced by less than 10-fold, demonstrating that, while these residues may participate in positioning S339, which tethers the catalytic base, their role is minor.  相似文献   

13.
Klaus Apel 《BBA》1977,462(2):390-402
In the green alga Acetabularia mediterranea a light-harvesting chlorophyll a/b · protein complex of 67 000 daltons has been found which contains two polypeptide chains of 21 500 and 23 000 daltons. These two polypeptides were isolated on a preparative scale and were further characterized by several different methods. Both polypeptides proved to be very similar. While their amino acid and sugar compositions as well as their immunochemical properties were almost identical the tryptic peptides and the cyanogen bromide fragments of the two polypeptides revealed minor but significant differences. The 67 000-dalton chlorophyll a/b · protein complex and its two polypeptide components were compared to the light-harvesting chlorophyll a/b · protein of higher plants.  相似文献   

14.
15.
Systems of poly(U)-directed polyphenylalanino synthesis by Escherichia coli ribosomes in the absence of elongation factors and GTP (factor-free system) or in the presence of one of the elongation factors and GTP (EF-G2 and EF-Tu-deperident systems) are described. It is shown that the use of oligouridylates of different length as templates in the factor-free system results in peptides, the degree of polymerization of which does not exceed the number of template codons, i.e. a conjugated translocation of the peptidyl-tRNA and the template takes place. Thus, the function of translocation as well as the specific binding of aminoacyl-tRNA and transpeptidation proved to be intrinsic to the ribosome itself. The study of kinetics of polyphenylalanine synthesis and dependence of the synthesis rate on the Mg2+ concentration in the factor-free, EF-Tu-dependent and EF-G-dependent translation systems has demonstrated that the elongation factors with GTP promote ribosomal mechanisms of aminoacyl-tRNA binding and translocation, respectively. It turned out that the factor-free translation system does not display miscoding. It is the promotion of translocation by EF-G with GTP that has been found to be responsible in full measure for miscoding, while EF-TU with GTP does not contribute to this.  相似文献   

16.
The equimolar reaction of a β-diketiminate lithium salt LLi(OEt2) [L = HC(CMeNAr)2; Ar = 2,6-iPr2C6H3] with either GeBr2 or SnBr2 in diethyl ether affords the synthetically useful monomeric β-diketiminate-element halides LGeBr (1) and LSnBr (2), respectively. Both are soluble in hydrocarbon solvents, stable in inert atmosphere, and have been characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction analysis.  相似文献   

17.
λCII is the key protein that influences the lysis/lysogeny decision of λ by activating several phage promoters. The effect of CII is modulated by a number of phage and host proteins including Escherichia coli HflK and HflC. These membrane proteins copurify as a tightly bound complex ‘HflKC’ that inhibits the HflB (FtsH)-mediated proteolysis of CII both in vitro and in vivo. Individual purification of HflK and HflC has not been possible so far, since each requires the presence of the other for proper folding. We report the first purification of HflK and HflC separately as active and functional proteins and show that each can interact with HflB on its own and each inhibits the proteolysis of CII. They also inhibit the proteolysis of E. coli σ32 by HflB. We show that at low concentrations each protein is dimeric, based on which we propose a scheme for the mutual interactions of HflB, HflK and HflC in a supramolecular HflBKC protease complex.  相似文献   

18.
In this study, we used native gradient-polyacrylamide gel electrophoresis and electroelution (NGGEE) to purify enzymatic proteins from Trichoderma koningii AS3.2774. With this method, we purified eight enzymatic proteins and classified them to the cellulase system by comparing secretions of T. koningii in inductive medium and in repressive medium. It resulted in 24-fold β-glucosidase (BG) purification with a recovery rate of 5.5%, and a specific activity of 994.6 IU mg− 1 protein. The final yield of BG reached 8 μg under purifying procedure of NGGEE. We also identified BG using the enzyme assay with thin-layer chromatography and MALDI-TOFMS. This BG had one subunit with a molecular mass of 69.1 kDa as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The hydrolytic activity of the BG had an optimal pH of 5.0, an optimal temperature of 50 °C, an isoelectric point of 5.68 and a Km for p-nitrophenyl-β-d-glucopyranoside of 2.67 mM. Taken together, we show that NGGEE is a reliable method through which μg grade of active proteins can be purified.  相似文献   

19.
Using isoelectrofocusing (IEF), multiple forms of Petunia β-galactosidase activity could be detected. The β-galactosidase pattern showed only minor tissue-specific differences. There were, however, species-specific differences. Zea mays, for instance, showed two bands which differed from the zones obtained with Petunia preparations. Petunia and corn leaves were mixed and extracted commonly. The species-specific activity patterns remained unchanged.Petunia preparations were inactivated by 8 Murea. Following dialysis, enzymatic activity and the Petunia-specific pattern were restored. The same holds true for a mixture of Petunia and E. coli β-galactosidase preparations. On refocusing isolated Petunia zones, untreated or inactivated by 8 M urea and reactivated by dialysis, the original mobilities were shown. Therefore, it seems highly improbable that the β-galactosidase pattern was due to artefacts. Using a Petunia line which was ‘pure’, also in respect to its β-galactosidase pattern, the four main bands were preparatively separated by IEF and characterized. They showed the same pH optimum (4.3), the same temperature optimum (55°), the same inactivation kinetics by urea, the same sensitivity against Cl?, and closely related Km. values. In sucrose gradient centrifugation they invariably showed S values of 8–10. The multiple activities could not be separated by zone electrophoresis using various carrier systems, or by gel filtration. It seems possible that they represent forms which differ only in isoelectric points, not in MW.  相似文献   

20.
A non-specific nucleoside hydrolase from Escherichia coli (RihC) has been cloned, overexpressed, and purified to greater than 95% homogeneity. Size exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis show that the protein exists as a homodimer. The enzyme showed significant activity against the standard ribonucleosides with uridine, xanthosine, and inosine having the greatest activity. The Michaelis constants were relatively constant for uridine, cytidine, inosine, adenosine, xanthosine, and ribothymidine at approximately 480 μM. No activity was exhibited against 2′-OH and 3′-OH deoxynucleosides. Nucleosides in which additional groups have been added to the exocyclic N6 amino group also exhibited no activity. Nucleosides lacking the 5′-OH group or with the 2′-OH group in the arabino configuration exhibited greatly reduced activity. Purine nucleosides and pyrimidine nucleosides in which the N7 or N3 nitrogens respectively were replaced with carbon also had no activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号