首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
P. Mathis  J. Haveman 《BBA》1977,461(2):167-181
Spinach chloroplasts were dark adapted and then submitted to a sequence of short saturating flashes. The resulting absorption changes in the near ultraviolet were analyzed and attributed to the donor and acceptor sides of Photosystem II. Our results provide a spectroscopic support to some current models of these parts of the photosynthetic electron transport.In Tris-treated chloroplasts (supplied with artificial donors) the absorption changes are largely due to the acceptor side. After each flash the signal decays with a fast phase (t12 = 1.2 ms at 9 °C) leaving a stationary level (on a 100-ms time scale). The fast phase has a small amplitude after odd-numbered flashes, whereas the stationary level behaves in a complementary fashion. The non-decaying signal is attributed mostly to the reduced secondary acceptor (A2?) and the fast phase to the simultaneous reoxidation of A2? and of the reduced primary acceptor (A1?). The effect of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea and of redox mediators (ascorbate, ferricyanide) also support this assignment. A fraction of A2 is shown to be reduced in dark-adapted chloroplasts, as proposed by Velthuys and Amesz (Biochim. Biophys. Acta (1974) 333, 85–94). The difference spectra support the view that A1? and A2? are plastoquinone radical anions. There are also some absorption changes that we cannot identify.In untreated chloroplasts a non-decaying absorption change (“slow phase”) occurs with a 4-flash periodicity. It is attributed to the transitions among the S states associated with the O2-evolving complex. A fast phase (t12 = 1.2 ms) in the decay following the first two flashes behaves like in Tris-treated chloroplasts, so that the assignment is tentatively the same. After the third flash, however, the magnitude of this fast phase is too large according to the hypothesis, so that there may be some contribution from the donor side. The fast phases become slower at lower pH (5.5 instead of 7.6), although there is no evidence for a protonation A1? or A2?.  相似文献   

3.
J.A. Van Best  L.N.M. Duysens 《BBA》1977,459(2):187-206
The kinetics of the luminescence of chlorophyll a in Chlorella vulgaris were studied in the time range from 0.2 μs to 20 μs after a short saturating flash (t12 = 25 ns) under various pretreatment including anaerobiosis, flashes, continuous illumination and various additions. A 1 μs luminescence component probably originating from System II was found of which the relative amplitude was maximum under anaerobic conditions for reaction centers in the state SPQ? before the flash, about one third for centers in the state S+PQ? or SPQ before the flash, and about one tenth for centers in the state S+PQ before the flash. S is the secondary donor complex with zero charge; S+ is the secondary donor complex with 1 to 3 positive charges; P, the primary donor, is the photoactive chlorophyll a, P-680, of reaction center 2; Q? is the reduced acceptor of System II, Q. Under aerobic conditions, where an endogenous quencher presumably was active, the luminescence was reduced by a factor two.The 1 μs decay of the luminescence is probably caused by the disappearance of P+ formed in the laser flash according to the reaction ZP+ → Z+P in which Z is the molecule which donates an electron to P+ and which is part of S. After addition of hydroxylamine, the 1 μs luminescence component changed with the incubation time exponentially (τ = 27 s) into a 30 μs component; during the same time, the variable fluorescence yield, measured 9 μs after the laser flash, decreased by a factor 2 with the same time constant. Hereafter in a second much slower phase the fluorescence yield decreased as an exponential function of the incubation time to about the dark value; meanwhile the 30 μs luminescence increased about 50% with the same time constant (τ = 7 min). Heat treatment abolished both luminescence components.The 1 μs luminescence component saturated at about the same energy as the System II fluorescence yield 60 μs after the laser flash and as the slower luminescence components. From the observation that the amplitude is maximum if the laser flash is given when the fluorescence yield is high after prolonged anaerobic conditions (state SQ?), we conclude that the 1 μs luminescence is probably caused by the reaction
PWQ?+hv → P1WQ?P+W?Q?P1WQ? → PWQ?+hv
in which W is an acceptor different from Q. The presence of S+ reduced the luminescence amplitude to about one third. Two models are discussed, one with W as an intermediate between P and Q and another, which gives the best interpretation, with W on a side path.  相似文献   

4.
Jérôme Lavergne 《BBA》1982,679(1):12-18
Chloroplasts were submitted to a sequence of saturating short flashes and then rapidly mixed with dichlorophenyldimethylurea (DCMU). The amount of singly reduced secondary acceptor (B?) present was estimated from the DCMU-induced increase in fluorescence in the dark caused by the reaction: QB?
Q?B. By varying the time interval between the preillumination and the mixing, the time course of B? reoxidation by externally added benzoquinone was investigated. It was found that benzoquinone oxidizes B? in a bimolecular reaction, and does not interact directly with Q?. When a sufficient delay after the preillumination was allowed in order to let benzoquinone reoxidize B? before the injection of DCMU, the fluorescence increase caused by one subsequent flash fired in the presence of DCMU was followed by a fast decay phase (t12 ? 100 μs). The amplitude of this phase was proportional to the amount of B? produced by the preillumination. This fast decay was observed only after the first flash in the presence of DCMU. These results are interpreted by assuming a binding of the singly reduced benzoquinone to Photosystem II where it acts as an efficient, DCMU-insensitive, secondary (exogenous) acceptor.  相似文献   

5.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):452-459
Redox titrations of the flash-induced formation of C550 (a linear indicator of Q?) were performed between pH 5.9 and 8.3 in Chlamydomonas Photosystem II particles lacking the secondary electron acceptor, B. One-third of the reaction centers show a pH-dependent midpoint potential (Em,7.5) = ? 30 mV) for redox couple QQ?, which varies by ?60 mV/pH unit. Two-thirds of the centers show a pH-independent midpoint potential (Emm = + 10 mV) for this couple. The elevated pH-independent Em suggests that in the latter centers the environment of Q has been modified such as to stabilize the semiquinone anion, Q?. The midpoint potentials of the centers having a pH-dependent Em are within 20 mV of those observed in chloroplasts having a secondary electron acceptor. It appears therefore that the secondary electron acceptor exerts little influence on the Em of QQ?. An EPR signal at g 1.82 has recently been attributed to a semiquinone-iron complex which comprises Q?. The similar redox behavior reported here for C550 and reported by others (Evans, M.C.W., Nugent, J.H.A., Tilling, L.A. and Atkinson, Y.E. (1982) FEBS Lett. 145, 176–178) for the g 1.82 signal in similar Photosystem II particles confirm the assignment of this EPR signal to Q?. At below ?200 mV, illumination of the Photosystem II particles produces an accumulation of reduced pheophytin (Ph?). At ?420 mV Ph? appears with a quantum yield of 0.006–0.01 which in this material implies a lifetime of 30–100 ns for the radical pair P-680+Ph?.  相似文献   

6.
The rise kinetics of the absorption changes induced at 515 nm and 480 nm by a flash were studied using two types of xenon flashes of different durations. The ‘slow’ rise of the absorption change (t12 = 15–20 μs) observed by Cox and Delosme (1978 C.R. Acad. Sci. (Paris) Sér. D 282, 775–778) and Joliot P., Delosme, R. and Joliot, A. ((1977) Biochim. Biophys. Acta 459, 47–57) was found to be due to double hits occurring in the reaction centers of System I during the flash.The turnover kinetics of the reaction centers of System I after a short flash were studied by a double flash method. They are in agreement with a second order reaction between P+-700 and its electron donor.  相似文献   

7.
Delayed fluorescence from Rhodopseudomonas sphaeroides chromatophores was studied with the use of short flashes for excitation. Although the delayed fluorescence probably arises from a back-reaction between the oxidized reaction center bacteriochlorophyll complex (P+) and the reduced electron acceptor (X?), the decay of delayed fluorescence after a flash is much faster (τ12 ≈ 120 μs) than the decay of P+X?. The rapid decay of delayed fluorescence is not due to the uptake of a proton from the solution, nor to a change in membrane potential. It correlates with small optical absorbance changes at 450 and 770 nm which could reflect a change in the state of X?.The intensity of the delayed fluorescence is 11–18-fold greater if the excitation flashes are spaced 2 s apart than it is if they are 30 s apart. The enhancement of delayed fluorescence at high flash repetition rates occurs only at redox potentials which are low enough (< + 240 mV) so that electron donors are available to reduce P+X? to PX? in part of the reaction center population. The enhancement decays between flashes as PX? is reoxidized to PX, as measured by the recovery of photochemical activity. Evidently, the reduction of P+X? to PX? leads to the storage of free energy that can be used on a subsequent flash to promote delayed fluorescence. The reduction of P+X? also is associated with a carotenoid spectral shift which decays as PX? is reoxidized to PX. Although this suggests that the free energy which supports the delayed fluorescence might be stored as a membrane potential, the ionophore gramicidin D only partially inhibits the enhancement of delayed fluorescence. With widely separated flashes, gramicidin has no effect on delayed fluorescence.At redox potentials low enough to keep X fully reduced, delayed fluorescence of the type described above does not occur, but one can detect weak luminescence which probably is due to phosphorescence of a protoporphyrin.  相似文献   

8.
A capacitor microphone was used to measure the enthalpy and volume changes that accompany the electron transfer reactions, PQAhv P+Q?A and PQAQBhv P+QAQ?B, following flash excitation of photosynthetic reaction centers isolated from Rhodopseudomonas sphaeroides. P is a bacteriochlorophyll dimer (P-870), and QA and QB are ubiquinones. In reaction centers containing only QA, the enthalpy of P+Q?A is very close to that of the PQA ground state (ΔHr = 0.05 ± 0.03 eV). The free energy of about 0.65 eV that is captured in the photochemical reaction evidently takes the form of a substantial entropy decrease. In contrast, the formation of P+QAQ?B in reaction centers containing both quinones has a ΔHr of 0.32 ± 0.02 eV. The entropy change must be near zero in this case. In the presence of o-phenanthroline, which blocks electron transfer between Q?A and QB, ΔHr for forming P+Q?AQB is 0.13 ± 0.03 eV. The influence of flash-induced proton uptake on the results was investigated, and the ΔHr values given above were measured under conditions that minimized this influence. Although the reductions of QA and QB involve very different changes in enthalpy and entropy, both reactions are accompanied by a similar volume decrease of about 20 ml/mol. The contraction probably reflects electrostriction caused by the charges on P+ and Q?A or Q?B.  相似文献   

9.
10.
Using thoroughly dark-adapted thylakoids and an unmodulated Joliot-type oxygen electrode, the following results were obtained. (i) At high flash frequency (4 Hz), the oxygen yield at the fourth flash (Y4) is lower compared to Y3 than at lower flash frequency. At 4 Hz, the calculated S0 concentration after thorough dark adaptation is found to approach zero, whereas at 0.5 Hz the apparent S0(S0 + S1) ratio increases to about 0.2. This is explained by a relatively fast donation (t12 = 1.0–1.5 s) of one electron by an electron donor to S2 and S3 in 15–25% of the Photosystem II reaction chains. The one-electron donor to S2 and S3 appears to be rereduced very slowly, and may be identical to the component that, after oxidation, gives rise to ESR signal IIs. (ii) The probability for the fast one-electron donation to S2 and S3 has nearly been the same in triazine-resistant and triazine-susceptible thylakoids. However, most of the slow phase of the S2 decay becomes 10-fold faster (t12 = 5–6 s) in the triazine-resistant ones. In a small part of the Photosystem II reaction chains, the S2 decay was extremely slow. The S3 decay in the triazine-resistant thylakoids was not significantly different from that in triazine-susceptible thylakoids. This supports the hypothesis that S2 is reduced mainly by Q?A, whereas S3 is not. (iii) In the absence of CO2/HCO?A and in the presence of formate, the fast one-electron donation to S2 and S3 does not occur. Addition of HCO?3 restores the fast decay of part of S2 and S3 to almost the same extent as in control thylakoids. The slow phase of S2 and S3 decay is not influenced significantly by CO2/HCO?3. The chlorophyll a fluorescence decay kinetics in the presence of DCMU, however, monitoring the Q?A oxidation without interference of QB, were 2.3-fold slower in the absence of CO2/HCO?3 than in its presence. (iv) An almost 3-fold decrease in decay rate of S2 is observed upon lowering the pH from 7.6 to 6.0. The kinetics of chlorophyll a fluorescence decay in the presence of DCMU are slightly accelerated by a pH change from 7.6 to 6.0. This indicates that the equilibrium Q?A concentration after one flash is decreased (by about a factor of 4) upon changing the pH from 7.6 to 6.0. When direct or indirect protonation of Q?B is responsible for this shift of equilibrium Q?A concentration, these data would suggest that the pKa value for Q?B protonation is somewhat higher than 7.6, assuming that the protonated form of Q?B cannot reduce QA.  相似文献   

11.
B.R. Velthuys  J. Amesz 《BBA》1975,376(1):162-168
Delayed fluorescence (luminescence) from spinach chloroplasts, induced by short saturating flashes, was studied in the temperature region between 0 and ?40 °C. At these temperatures, in contrast to what is observed at room temperature, luminescence at 40 ms after a flash was strongly dependent, with period four, on the number of preilluminating flashes (given at room temperature, before cooling). At ?35 °C luminescence of chloroplasts preilluminated with two flashes (the optimal preillumination) was about 15 times larger than that of dark-adapted chloroplasts. The intensity of luminescence obtained with preilluminated chloroplasts increased steeply below ?10 °C, presumably partly due to accumulation of reduced acceptor (Q?), and reached a maximum at ?35 °C.In the presence of 50 mM NH4Cl the temperature optimum was at ?15 °C; at this temperature luminescence was increased by NH4Cl; at temperatures below ?20 °C luminescence at 40 ms was decreased by NH4Cl. At room temperature a strongly enhanced 40-ms luminescence was observed after the third and following flashes. The results indicate that both the S2 to S3 and the S3 to S4 conversion are affected by NlH4Cl.Inhibitors of Q? reoxidation, like 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea, did only slightly affect the preillumination dependence of luminescence at sub-zero temperatures if they were added after the preillumination. This indicates that these substances by themselves do not accelerate the deactivation of S2 and S3.  相似文献   

12.
J.A. Van Best  P. Mathis 《BBA》1978,503(1):178-188
Absorption changes (ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t12 = 20–40 μs, and a minor phase with t12 ? 200 μs), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

13.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):443-451
Redox titration of the electrochromic carotenoid band shift, detected at 50 μs after a saturating actinic flash, in spinach chloroplasts, shows that only one electron acceptor in Photosystem II participates in a transmembrane primary electron transfer. This species, the primary quinone acceptor, Q, shows only one midpoint potential (Em,7.5) of approx. 0 V and is undoubtedly equivalent to the fluorescence quencher, QH. A second titration wave is observed at low potential (Em,7.5 ? ? 240 mV) and at greater than 3 ms after a saturating actinic flash. This wave has an action spectrum different from that of Photosystem II centers containing Q and could arise from a secondary but not primary electron transfer. A low-potential fluorescence quencher is observed in chloroplasts which largely disappears in a single saturating flash at ? 185 mV and which does not participate in a transmembrane electron transfer. This low-potential quencher (probably equivalent to fluorescence quencher, QL) and Q are altogether different species. Redox titration of C550 shows that if electron acceptor Qβ is indeed characterized by an Em,7 of + 120 mV, then this acceptor does not give rise to a C550 signal upon reduction and does not participate in a transmembrane electron transfer. This titration also shows that C550 is not associated with QL.  相似文献   

14.
Bruce Diner 《BBA》1974,368(3):371-385
1. Spinach chloroplasts, but not whole Chlorella cells, show an acceleration of the Photosystem II turnover time when excited by non-saturating flashes (exciting 25 % of centers) or when excited by saturating flashes for 85–95 % inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Following dark adaptation, the turnover is accelerated after a non-saturating flash, preceded by none or several saturating flashes, and primarily after a first saturating flash for 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition. A rapid phase (t12 approx. 0.75 s) is observed for the deactivation of State S2 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.2. These accelerated relaxations suggest that centers of Photosystem II are interconnected at the level of the primary electron transfer and compete for primary oxidizing equivalents in a saturating flash. The model in best agreement with the experimental data consists of a paired interconnection of centers.3. Under the conditions mentioned above, an accelerated turnover may be observed following a flash for centers in S0, S1 or S2 prior to the flash. This acceleration is interpreted in terms of a shift of the rate-limiting steps of Photosystem II turnover from the acceptor to the donor side.  相似文献   

15.
(1) In photosystem I (PS I) particles in the presence of dithionite and intense background illumination at 290 K, an external magnetic field (0–0.22 T) induced an increase, ΔF, of the low chlorophyll a emission yield, F (ΔFF ? 1–1.5%). Half the effect was obtained at about 35–60 mT and saturation occurred for magnetic fields higher than about 0.15 T. In the absence of dithionite, no field-induced increase was observed. Cooling to 77 K decreased ΔF at 685 nm, but not at 735 nm, to zero. Measuring the emission spectra of F and ΔF, using continuous excitation light, at 82, 167 and 278 K indicated that the spectra of F and ΔF have about the same maximum at about 730, 725 and 700 nm, respectively. However, the spectra of ΔF show more long-wavelength emission than the corresponding spectra of F. (2) Only in the presence of dithionite and with (or after) background illumination, was a luminescence (delayed fluorescence) component observed at 735 nm, after a 15 ns laser flash (530 nm), that decayed in about 0.1 μs at room temperature and in approx. 0.2 μs at 77 K. A magnetic field of 0.22 T caused an appreciable increase in luminescence intensity after 250 ns, probably mainly caused by an increase in decay time. The emission spectra of the magnetic field-induced increase of luminescence, ΔL, at 82, 167 and 278 K coincided within experimental error with those of ΔF mentioned above. The temperature dependence of ΔF and ΔL was found to be nearly the same, both at 685 and at 735 nm. (3) Analogously to the proposal concerning the 0.15 μs luminescence in photosystem II (Sonneveld, A., Duysens, L.N.M. and Moerdijk, A. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5889–5893), we propose that recombination of the oxidized primary donor P-700+ and the reduced acceptor A?, probably A?1, of PS I causes the observed fast luminescence. The effect of an external magnetic field on this emission may be explained by the radical pair mechanism. The field-induced increase of the 0.1–0.2 μs luminescence seems to be at least in large part responsible for the observed increase of the total (prompt + delayed) emission measured during continuous illumination in the presence of a magnetic field.  相似文献   

16.
Sándor Demeter  Imre Vass 《BBA》1984,764(1):24-32
In the glow curves of chloroplasts excited by a series of flashes at +1°C the intensity of the main thermoluminescence band appearing at +30°C (B band; B, secondary acceptor of Photosystem II) exhibits a period-4 oscillation with maxima on the 2nd and 6th flashes indicating the participation of the S3 state of the water-splitting system in the radiative charge recombination reaction. After long-term dark adaptation of chloroplasts (6 h), when the major part of the secondary acceptor pool (B pool) is oxidized, a period-2 contribution with maxima occurring at uneven flash numbers appears in the oscillation pattern. The B band can even be excited at ?160°C as well as by a single flash in which case the water-splitting system undergoes only one transition (S1 → S2). The experimental observations and computer simulation of the oscillatory patterns suggest that the B band originates from charge recombination of the S2B? and S3B? redox states. The half-time of charge recombination responsible for the B band is 48 s. When a major part of the plastoquinone pool is reduced due to prolonged excitation of the chloroplasts by continuous light, a second band (Q band; Q, primary acceptor of Photosystem II) appears in the glow curve at +10°C which overlaps with the B band. In chloroplasts excited by flashes prior to DCMU addition only the Q band can be observed showing maxima in the oscillation pattern at flash numbers 2, 6 and 10. The Q band can also be induced by flashes after DCMU addition which allows only one transition of the water-splitting system (S1 → S2). In the presence of DCMU, electrons accumulate on the primary acceptor Q, thus the Q band can be ascribed to the charge recombination of either the S2Q? or S3Q? states depending on whether the water-splitting system is in the S2 or the S3 state. The half-time of the back reaction of Q? with the donor side of PS II (S2 or S3 states) is 3 s. It was also observed that in a sequence of flashes the peak positions of the Q and B bands do not depend on the advancement of the water-splitting system from the S2 state to the S3 state. This result implies that the midpoint potential of the water-splitting system remains unmodified during the S2 → S3 transition.  相似文献   

17.
18.
19.
Flash-induced absorption changes of Triton-solubilized Photosystem I particles from spinach were studied under reducing and/or illumination conditions that serve to alter the state of bound electron acceptors. By monitoring the decay of P-700 following each of a train of flashes, we found that P-430 or components resembling it can hold 2 equivalents of electrons transferred upon successive illuminations. This requires the presence of a good electron donor, reduced phenazine methosulfate or neutral red, otherwise the back reaction of P-700+ with P-430 occurs in about 30 ms. If the two P-430 sites, designated Centers A and B, are first reduced by preilluminating flashes or chemically by dithionite under anaerobic conditions, then subsequent laser flashes generate a 250 μs back reaction of P-700+, which we associate with a more primary electron acceptor A2. In turn, when A2 is reduced by background (continuous) illumination in presence of neutral red and under strongly reducing conditions, laser flashes then produce a much faster (3 μs) back reaction at wavelengths characteristic of P-700. We associate this with another more primary electron acceptor, A1, which functions very close to P-700. The organization of these components probably corresponds to the sequence P-700-A1-A2-P-430[AB]. The relation of the optical components to acceptor species detected by EPR, by electron-spin polarization or in terms of peptide components of Photosystem I is discussed.Preliminary experiments with broken chloroplasts suggest that an analogous situation occurs there, as well.  相似文献   

20.
The yield of P-700 photooxidation has been studied in isolated chloroplast membranes by measuring the extent of the flash-induced absorption increase at 820 nm (ΔA820) in the microsecond time range. The extent of ΔA820 induced by non-saturating laser flashes was increased by the following treatments. (1) Suspension of chloroplast membranes in Mg2+ free medium (plus 15 mM K+) which leads to unstacking of grana (as detected by a decrease in chlorophyll fluorescence). (2) Reduction of Q, the primary acceptor of Photosystem II, in the presence of 20 μM 3-(3,4 dichlorophenyl)-1,1-dimethylurea by a saturating xenon flash, fired 300 ms before the laser flash. (3) Phosphorylation of light harvesting chlorophyll ab-protein complex, which occurs in the presence of ATP after activation of protein kinase in the dark with NADPH and ferredoxin. We conclude that the Mg2+ concentration, the redox state of Q and the protein-phosphorylation all can control the photochemical efficiency of P-700 photooxidation in isolated chloroplasts, and we discuss these results in relation to control of excitation energy distribution between the two photosystems. We also discuss the significance of these results in relation to the regulation of photosynthetic electron transport in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号