首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specialized natural enemies that forage for polyphagous hosts need to locate hosts on different plants. Telenomus podisi (Hymenoptera: Platygastridae) is a stink bug egg parasitoid with a preference for Euschistus heros (Hemiptera, Pentatomidae), a polyphagous species. The aim of this study was to evaluate the induction of defences in three E. heros host plants: maize (Zea mays), sunflower (Helianthus annuus) and pigeon pea (Cajanus cajan). We hypothesized that E. heros damage to these three plants enhances the attraction of the parasitoid T. podisi as has been observed in other systems. Using Y-tube olfactometer bioassays, we tested parasitoid responses to combinations of the following odour sources: clean air, undamaged plants and plants damaged by stink bug feeding. Volatiles were collected by means of dynamic headspace collection and analysed by gas chromatography coupled to mass spectrometry. T. podisi did not distinguish odours from undamaged plants against air for any of the three plant species. For maize, the parasitoid preferred the odour from herbivore-damaged plants over both clean air and undamaged plants. For sunflower, the parasitoid only preferred the odour of herbivore-damaged plants over the odour of undamaged plants. For pigeon pea, no preferences were observed. Quantitative differences in the volatile profile of damaged and undamaged plants were observed in each plant species. We conclude that sunflower and maize plants, when damaged by E. heros, release volatiles that attract the parasitoid T. podisi; the parasitoid appears to use a different blend composition to distinguish herbivore-damaged plants of each species.  相似文献   

2.
The use of insecticides, herbicides, and fungicides commonly occurs in mixtures in tanks in order to control phytosanitary problems in crops. However, there is no information regarding the effects of these mixtures on non-target organisms associated to the rice agroecosystem. The aim of this study was to know the toxicity of pesticide tank mixtures from rice crops against Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Based on the methods adapted from the International Organisation for Biological and Integrated Control of Noxious Animals and Plants (IOBC), adults of T. podisi were exposed to residues of insecticides, herbicides, and fungicides, individually or in mixture commonly used by growers, in laboratory and on rice plants in a greenhouse. The mixture between fungicides tebuconazole, triclyclazole, and azoxystrobin and the mixture between herbicides cyhalofop-butyl, imazethapyr, imazapyr/imazapic, and penoxsulam are harmless to T. podisi and can be used in irrigated rice crops without harming the natural biological control. The insecticides cypermethin, thiamethoxam, and bifenthrin/carbosulfan increase the toxicity of the mixtures in tank with herbicides and fungicides, being more toxic to T. podisi and less preferred for use in phytosanitary treatments in the rice crop protection.  相似文献   

3.
We conducted three bioassays to evaluate the effect of low-temperature storage of eggs (host) and pupae and adults (parasitoid) on the biology and parasitism capacity of the egg parasitoid Telenomus remus (Nixon) (Hymenoptera: Platygastridae). Viable stored Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae) eggs were parasitized to the same degree or even higher than fresh eggs when stored until 14 days at 5°C or until 21 days at 10°C. In contrast, the percentage of parasitized sterilized eggs was equal to the control only when stored for 7 and 14 days. Survival of T. remus pupae declined with storage time at both studied temperatures (5 and 10°C). However, after 7 days of storage, survival of pupae was still 86.3 and 64.9% at 10 and 5°C, respectively. The number of adult male survivors remained similar until the fourth storage day at both 5 and 10°C. In contrast, female survival did not differ until day 8 at 10°C or day 6 at 5°C. Parasitism capacity of stored adults was not altered by storage compared with the control. Therefore, we conclude that the maximal storage time at 10°C is 21 days for viable C. cephalonica eggs and 7 days for T. remus pupae, while parasitoid adults should not be stored for more than 4 days at either 5 or 10°C.  相似文献   

4.
One method for controlling the Asian citrus psyllid (ACP) Diaphorina citri Kuwayama, the vector of the putative causal agent of Huanglongbing, uses the parasitoid Tamarixia radiata (Waterston). However, the general intensive use of insecticides has reduced the numbers of this parasitoid. This study evaluated the effect of the residual action of 24 insecticides on T. radiata and also determined the differential toxicity of insecticides to D. citri and T. radiata, using three bioassays. In the first, when adults of the parasitoid were exposed to residues of the 24 insecticides, ten were considered short-life (class 1), six slightly persistent (class 2), five moderately persistent (class 3), and three insecticides were considered persistent (class 4), under the IOBC/WPRS classification system. The second bioassay evaluated the sublethal concentrations of the persistent insecticides (formetanate, dimethoate, spinosad). Increasing the concentrations of the insecticides increased the number that were classified as persistent. In the third bioassay, evaluation of the differential toxicity of eight insecticides to the ACP and the parasitoid showed that chlorpyrifos and bifenthrin were more harmful to T. radiata. Therefore, these two insecticides are not recommended for application at the time of parasitoid release. Cypermethrin, imidacloprid, and dimethoate caused higher mortality of D. citri and are most often recommended in IPM programs. The choice of an insecticide for the control of citrus pests must be made with care, aiming to preserve the natural enemies in the ecosystem, and thereby contribute to the success of biological control.  相似文献   

5.
Parasitoid host selection is mainly mediated by chemical cues, which can be adjusted by experience, changing their innate behavior. Therefore, this study evaluated if immature experience (pre-imaginal conditioning) on eggs and volatiles from different host eggs has influence on parasitism and chemotaxic behavior of Telenomus podisi Ashmead and/or Trissolcus basalis Wollaston (Hymenoptera: Scelionidae). Both wasp species were submitted to a multiple-choice parasitism test among Euschistus heros (Fabricius), Piezodorus guildinii (Westwood), and Nezara viridula L. (Hemiptera: Pentatomidae) (Hemiptera: Pentatomidae) egg masses. Eggs from these three stink bugs were equally offered to female parasitoids. After that, adults which emerged from each host were also exposed to parasitism in a multiple-choice test for up to an additional generation. Moreover, in olfactometer “Y,” the behavior of innate and experienced T. podisi females to volatiles from hosts’ egg extracts was tested, to study their learning and memory ability. The original host had influence on T. podisi parasitism; however, T. basalis always parasitized more N. viridula eggs independently of its last rearing host. Innate T. podisi females responded positively to E. heros and P. guildinii egg volatiles, but this behavior was not observed in N. viridula. When T. podisi females were experienced on egg volatiles from a new host, they showed significant learning and memory ability for the specific host volatile for, at least, 24 h. Experienced wasps responded positively to N. viridula and through this result we have evidences about the possibility to manipulate wasp’s preferences to a specific target host.  相似文献   

6.
High parasitism by a native parasitoid, Phasgonophora sulcata Westwood (Hymenoptera: Chalcididae), has been reported on emerald ash borer (hereafter EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in North America. Use of this parasitoid in an augmentative biological control program has been proposed to slow the spread of EAB, yet information is lacking on key aspects of this parasitoid’s dispersal. We document the flight capacity and walking activity of P. sulcata, its potential fecundity, and describe how age, body size, temperature, and time of day affect these parameters. Wasp flight capacity, measured using flight mills, increased with temperature and decreased with age. Unexpectedly, age and body size did not affect wasp walking activity, and we saw no relationship between walking activity and flight capacity. Older wasps had lower potential fecundity than younger wasps. These results suggest that P. sulcata should be released as pupae near EAB-infested ash trees to improve efficacy and potential biological control success.  相似文献   

7.
The toxicity of spinosad was evaluated using the RaPID Assay® Spinosad immunosorbent assay in different developmental stages of the parasitoid, Hyposoter didymator, and in its host, fourth-instar larvae of the cotton leafworm Spodoptera littoralis. Spinosad was applied directly to pupae and adults of H. didymator (ingestion or topical application) or to the immature stages of the parasitoid via the host larvae. Low amounts of spinosad were recovered from S. littoralis host larvae after topical treatment, and the compound was mainly retained in the hemolymph. Amounts of spinosad detected in third-instar larvae of H. didymator, pulled out from the hemolymph of parasitized S. littoralis larvae, were 85 pg (3.57 ng a.i./g body weight) in dead larvae, and 82 pg (3.42 ng a.i./g body weight) in alive individuals. After topical treatment of H. didymator cocoons, most of the compound was retained in the silken cocoon, preventing contamination of the pupa. Also in the parasitoid adults, relatively low amounts of spinosad were accumulated in the body overall, but half of all the insecticide recovered was found in the ovaries. The kinetic results obtained help to better understand the toxicity of spinosad in the complex S. littoralis–H. didymator, and to ascertain the compatibility between spinosad and the parasitoid for optimizing the control of lepidopteran pests.  相似文献   

8.
The behavioral response of the larval parasitoid Spintherus dubius (Hymenoptera: Pteromalidae) to volatile compounds derived from its Apion weevil hosts was investigated in two-choice bioassays. Odor source candidates were the larval and adult stages of weevils, clover flowers, and feces from adult weevils. Despite S. dubius being a larval parasitoid, the odor of weevil larvae isolated from the clover flowers was not attractive to female parasitoids. Surprisingly, S. dubius females were instead attracted by the odor from the feces of adult weevils. The female parasitoids were similarly attracted to the feces produced by the two main hosts, the red clover weevil (A. trifolii) and the white clover weevil (A. fulvipes). Chemical analysis of the volatile composition of feces produced by the two hosts revealed qualitatively similar odor profiles, correlating with the observed attraction by the parasitoid towards both odor sources. Some of the identified volatile compounds are commonly present in clover plant headspace fractions and may function as a kairomone to facilitate orientation by S. dubius to Apion-infested clover flowers. Larval and adult weevils were not attractive for parasitoid females, whereas, for the white clover weevil-plant association, infested flowers were highly attractive. These data show the use by the clover weevil parasitoid of an alternative source of olfactory information for locating its host.  相似文献   

9.
The parasitoid Lariophagus distinguendus Förster (Hymenoptera: Pteromalidae) is a promising candidate for biological control of the granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae) in grain stores. For practical application in northern temperate regions it is important that the parasitoids can survive the cold temperatures in the grain during the winter and resume activity the following spring. In the present study the survival of Lariophagus distinguendus and Sitophilus granarius was followed during a simulated winter with stepwise reductions of temperature down to 6°C which was maintained for 15 weeks. Only 20% of the weevils were alive after eight weeks at 6°C, whereas the survival of L. distinguendus was unaffected by the temperature decrease. After being returned to room temperature an F 1 generation of the parasitoid emerged and was able to reproduce.  相似文献   

10.
Three species of cecidomyiid midges (Diptera: Cecidomyiidae), whose larvae overwinter in the soil, can cause significant yield losses on wheat in Europe: the orange wheat blossom midge, Sitodiplosis mosellana (Géhin), the yellow wheat blossom midge, Contarinia tritici (Kirby), and the saddle gall midge, Haplodiplosis marginata (von Roser). The biological control of wheat midges by their parasitoids can contribute to reduce the midge populations. Soil samples were collected in several fields in Belgium in 2012–2014 in order to characterize the parasitism rates and parasitoid complexes in overwintering larvae. The parasitism rates varied greatly between the sampled fields: 3–100, 0–100 and 2% for S. mosellana, H. marginata and C. tritici, respectively. The parasitism rate was not related to the larval density of wheat midge. The three wheat midges have totally distinct parasitoid complexes in Belgium. Eight species (Hymenoptera: Pteromalidae and Platygastridae) were found as parasitoid of S. mosellana: Macroglenes penetrans (Kirby), Amblypasis tritici (Walker), Euxestonotus error (Fitch), Euxestonutus sp. Fouts, Leptacis sp. Foerster, Platygaster gracilipes (Huggert), Platygaster nisus Walker, and Platygaster tuberosula (Kieffer). According to their abundance, M. penetrans, E. error and P. tuberosula appeared as the main parasitoids of S. mosellana in Belgium. For the two other wheat midges, only one species of the family Platygastridae was found for each midge: Platygaster equestris (Spittler) for H. marginata and Synopeas myles (Walker) for C. tritici.  相似文献   

11.
Dicyphus hesperus Knight (Heteroptera: Miridae) can contribute to the suppression of populations of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and Bactericera cockerelli Sulcer (Hemiptera: Psyllidae) in tomato. Nevertheless, the remaining levels of these pests could still be too high for the crop to tolerate. We thus tested here whether the combination of D. hesperus with the specialist parasitoids Eretmocerus eremicus Rose & Zolnerowich (Hymenoptera: Aphelinidae) (whitefly) and Tamarixia triozae (psyllid) can result in better pest control compared with methods based exclusively on single-species releases in tomato. We conducted two simultaneous experiments in tomato (‘Whitefly’ and ‘Psyllid’ Experiment), where we compared the effectiveness against B. tabaci and B. cockerelli in cages receiving releases of the predator or the specialist parasitoid alone, or in combination. Although all natural enemies reduced pest levels when released separately, the combination of D. hesperus with E. eremicus and D. hesperus with T. triozae resulted in better whitefly and psyllid control, respectively, compared with the separate releases.  相似文献   

12.
Although light trap can be used to control pest populations, they can also kill the natural enemies of pests. Scleroderma guani (Hymenoptera: Bethylidae) is a parasitoid of a bark-weevil Pissodes punctatus (Coleoptera: Curculionidae). To understand the phototactic behavior of S. guani, we investigated its diurnal and nocturnal behavior, then examined its phototactic response to nine monochromatic lights and to five intensities of the two most attractive lights. Our results showed that S. guani is most active during the day, while remain still in a dark room or at night. S. guani showed a positive response both to a broad spectrum of monochromatic light and total light (natural light), which implies a broad sensitivity to the light spectrum. S. guani was most sensitive to blue (450 nm) and green (549 nm) lights, suggesting its visual system composed of blue and green receptors. S. guani was least sensitive to ultraviolet (340 nm) light, which may be caused by long-term mass rearing and propagating under artificial conditions. Furthermore, low intensities elicited a positive phototactic response, while high intensities showed a decreased trend under both blue and green lights. Thus, S. guani is a phototactic insect which shows preferences for light in both color and intensity. This study suggests that light trap can only be utilized to control the adult P. punctatus during and after its peak emergence, due to the overlap in the spectral sensitivity of both pest and parasitoid adults.  相似文献   

13.
Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) is an egg parasitoid of Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae). The parasitism and development of C. noackae was studied in T. peregrinus eggs of different ages, laid on eucalyptus leaves or paper towel and stored at 5 °C. The emergence, sex ratio and development of C. noackae and hatched nymphs of T. peregrinus were evaluated. This parasitoid had an emergence rate higher than 60% from zero to one, one to two, and two to three-day old eggs and lower than 10% for those 3–4 and 4–5 days old. The female proportion was 78% and the egg-adult period for C. noackae was 19.5 days. The use of T. peregrinus eggs up to three days old, laid on paper towel and stored at 5 °C for 14 days did not affect the biological parameters of C. nockae and should be used for mass rearing of this parasitoid.  相似文献   

14.
We studied the occurrence of Wolbachia in the parasitoid Gonatopus bonaerensis Virla (Hymenoptera: Dryinidae). In order to verify the existence of natural infections in the parasitoid, a field survey was conducted. Identification of Wolbachia was performed on the basis of 16S rDNA, wsp_F1, and wsp_R1-sequences. After the detection of the bacteria, infected specimens of G. bonaerensis were treated with a solution of tetracycline. In Tucumán, parasitoids hold Wolbachia endosymbiont, which seems to control the wasp’s reproduction in the nature turning it into thelytokous. The symbiont was identified as the Wolbachia sp. wRi strain. The cure of infected unfertilized females determined the normal arrhenotokous parthenogenesis and the production of male offspring. As a consequence of this procedure, the male of G. bonaerensis is described for the first time.  相似文献   

15.
The lime leaf miner, Phyllonorycter issikii, is a moth species native to East Asia, which recently invaded considerable part of Europe. A study on the natural enemies of this invasive species was conducted in Bulgaria. Tilia cordata leaves infested with the lime leaf miner were collected in 2015 and 2016 in two public parks in Sofia. A total of eleven eulophid parasitoids (Hymenoptera: Eulophidae) belonging to three subfamilies - Entedoninae, Eulophinae and Tetrastichinae, and one braconid species (Hymenoptera: Braconidae) were recorded. In addition, one unidentified ichneumonid species was reared. Minotetrastichus platanellus was the most abundant species in the samples comprising 76.88% of the parasitoids reared from collected immature and pupal stages of Ph. issikii. It is followed by Sympiesis gordius (6.53%) and S. sericeicornis (6.03%). Three new host-parasitoid associations were established. The entomopathogenic fungi Beuveria bassiana and Metarhizium anisopliae (Hypocreales) were isolated for the first time from cadavers of Ph. issikii larvae and pupae. Based on the presented observation we hypothesized that the lime leaf miner can produce three generations in Bulgaria.  相似文献   

16.
We investigated the influence of the Fusarium mycotoxin deoxynivalenol on the English grain aphid Sitobion avenae (Hemiptera: Aphididae) and its parasitic wasp Aphidius ervi (Hymenoptera: Braconidae) using in vitro laboratory experiments. In this tritrophic interaction, deoxynivalenol caused lethal (declined survival) and sublethal (prolonged nymphal development and reduced reproduction) effects on S. avenae aphids and consequentially led to a decreased production of parasitoid offspring resulting from parasitized deoxynivalenol-contaminated aphids. This paper highlights that the presence of mycotoxins should be considered in environmental risk assessment tests because they may alter the efficiency of biological control agents such as parasitoids through food chain contamination.  相似文献   

17.
Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymaridae), is an egg parasitoid of rice planthoppers, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). This study evaluated effects of the insecticide imidacloprid on orientation behavior and parasitizing capacity of A. nilaparvatae. Sub-lethal concentrations of imidacloprid (LC20 and LC10) disrupted the foraging ability of A. nilaparvatae exposed to imidacloprid through contact or oral routes. Some survivors did not respond to volatiles from N. lugens-infested plants. Responsive individuals were equally attracted to volatiles from N. lugens-infested and healthy plants. Volatiles emitted from rice plants treated with a low concentration of imidacloprid were more attractive to A. nilaparvatae than those from plants treated with a high concentration of imidacloprid. Parasitism of N. lugens by A. nilaparvatae that survived contact with sub-lethal concentrations of imidacloprid did not decrease significantly. When A. nilaparvatae were fed imidacloprid-honey mixture, parasitism rates were 1.49% and 0%, respectively, significantly lower than those of the control (9.58%). Parasitism of N. lugens eggs in high concentration of imidacloprid treated rice plants by A. nilaparvatae decreased significantly. These effects involving disturbed foraging ability and reduced parasitizing capacity of A. nilaparvatae indicated that imidacloprid could decrease the performance of this parasitoid.  相似文献   

18.
Acute toxicity and sublethal effects of six commonly used insecticides, i.e., malathion, carbaryl, imidacloprid, cypermethrin, dimethoate, and monocrotophos, were evaluated through biological and life table parameters of Zygogramma bicolorata Pallister in laboratory. Concentration of these insecticides was within the minimum ranges of recommended field rate. Among the insecticides tested for acute toxicity, monocrotophos and imidacloprid caused the highest mortality of third instars and prolonged the development time of treated larvae. Fecundity and egg viability were also reduced in monocrotophos-treated group. Sublethal toxicity (carryover effect) of insecticides was evaluated through life table analysis of F1 progenies developed from surviving third instars treated for acute toxicity experiment. Survivorship was prolonged to 117 days in carbaryl treated group. Monocrotophos prolonged the overall immature development time compared to other insecticidal treatments and untreated control. Moreover, the lowest female survival, and the lowest value of life indices parameters, i.e., m x , R 0, r m, and λ, was evident in monocrotophos-exposed groups compared to that in other tested insecticides. However, mean generation time (T c) and doubling time (DT) were significantly prolonged in the insecticide-treated groups compared to those in the untreated group. A significantly greater number of females were produced in control groups than those in treated with malathion and sex ratio (proportion of male) was computed as 0.34 and 0.37, respectively. Based on the present study, it can be concluded that none of the tested insecticides can be classified as safe to Z. bicolorata. However, comparisons among the tested insecticides showed that malathion was less toxic compared to other insecticides tested.  相似文献   

19.
The species structure of parasitoids (Hymenoptera, Eulophidae) of the invasive lime leafminer Phyllonorycter issikii (Kumata, 1963) (Lepidoptera, Gracillariidae) was reexamined ten years after the latest survey. The work was carried out in 2015 in three previously selected test plots within the city of Izhevsk. Extremely high survival rates (61.7 to 89%) of the leafminer were observed while the parasitoid complex had a negligible impact on its mortality (0.6 to 1.6%). A slight structural transformation of the parasitoid complex was noted, namely a decrease in the number of dominants and a change of the dominant species. In addition, the species structure of the parasitoids collected in 22 populated localities in Udmurtia was studied in 2016. Five new parasitoids of the lime leafminer were found: Pnigalio pectinicornis (Linnaeus, 1758), Sympiesis acalle Walker, 1848, Chrysocharis amanus Walker, 1839, Ch. pentheus Walker, 1839, and Ch. polyzo Walker, 1839. Two species of parasitoids of Ph. issikii were recognized as new to Udmurtia: Pnigalio agraules (Walker, 1839) and Pediobius saulius (Walker, 1839).  相似文献   

20.
Gudrun Strauss 《BioControl》2009,54(2):163-171
Neodryinus typhlocybae (Ashmead) (Hymenoptera: Dryinidae) is a natural enemy of the planthopper Metcalfa pruinosa (Say) (Hemiptera: Flatidae), introduced from North America into Europe and regionally established as a pest species. Prior to possible utilization of the parasitoid as a biocontrol agent in Austria, its potential negative impacts on eight native plant- and leaf-hopper species were examined in the laboratory. Non-target species were selected according to the following criteria (a) occurrence in Austria, (b) close phylogenetic relationship with M. pruinosa, (c) larvae free-living and surface-dwelling, (d) phenology, (e) larval size, (f) ecological similarity with M. pruinosa and (g) availability of sufficient numbers of individuals. The Auchenorrhyncha species Issus coleoptratus (Fabricius), Chloriona smaragdula (Stål), Conomelus anceps (Germar), Alebra wahlbergi (Boheman), Empoasca sp., Idiocerus stigmaticalis (Lewis), Macrosteles septemnotatus (Fallén) and Japananus hyalinus (Osborn) were chosen for testing. Larvae from both the target and the non-target species were offered separately to N. typhlocybae females in no-choice laboratory tests and all attacks, instances of host feeding and parasitizations were recorded. No non-target species was attacked, fed upon or parasitized by N. typhlocybae, whereas M. pruinosa was attacked frequently. This study supports the assumption that the host range of N. typhlocybae is restricted to Flatidae, of which only the introduced species occurs in Austria. Direct negative effects on other Auchenorryncha species in Austria are therefore unlikely to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号