首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of 0.1-5 muM N-methylphenazonium methosulphate approx. 50-70% oxidation of cytochrome b-559 can be induced by far-red light. The oxidation is best observed with long wavelength far-red light (732 nm) of moderate intensities (approx. 10(4) ergs/cm2 per s) and is reversed by subsequent illumination with red light. Concentrations of N-methylphenazonium methosulphate above 5 muM are inhibitory probably due to cyclic electron flow. The far-red oxidation is inhibited by low concentrations of the plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, while 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibits red light reduction and increases the amplitude of far-red oxidation. The effect of N-methylphenazonium methosulphate is mimicked by N-methyl-phenazonium ethosulphate, but not by pyocyanine or diaminodurene. Low concentrations (2-3 muM) of N-methylphenazonium methosulphate also stimulate a 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone-inhibitable red light reduction of cytochrome f.  相似文献   

2.
U. Heber  M.R. Kirk  N.K. Boardman 《BBA》1979,546(2):292-306
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

3.
(1) The proportion of higher plant chloroplast cytochrome b-559 oxidizable during illumination by low intensity 732 nm light increases as the pH is decreased below 6.5. At pH 5.0-5.3 total oxidation is seen and subsequent red light can cause reduction of up to 2/3 of the oxidized cytochrome. The oxidation by far red light at pH 5 is inhibited by 2 muM 2,5-dibromo-3-methyl-6-isopropyl-rho-benzoquinone whereas the red light-induced reduction is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. In this pH range ferricyanide-oxidized cytochrome b-559 exists in a form not reducible by ferrocyanide. (2) An increase in the amplitude of far-red induced oxidation also occurs at higher pH (up to pH 7.8) after pre-treatment of chloroplasts with substantially higher levels of light (approx. 10(6) ergs-cm-2-s-1). The degree of light activation is pH dependent, being more pronounced at lower pH. After light activation, cytochrome b-559 can be completely oxidized by far-red light in a manner reversible by red light up to pH values of 6, and the curve describing the amplitude of far-red oxidation as a function of pH is shifted by 0.5-1.0 pH unit toward higher pH. Far-red oxidation and red light reduction are again inhibited by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, respectively. (3) Light activation at pH 5.2-6.0 is also manifested in a small decrease in the amplitude of subsequent dark ferrocyanide reduction, and this decrease is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (10 muM). (4) The effect of intramembranal acidity on the effective redox potential of cytochrome b-559 and its function is discussed.  相似文献   

4.
Light-induced redox changes of cytochrome b-559   总被引:2,自引:0,他引:2  
Dark incubation of spinach or pea chloroplasts with 10 μm carbonylcyanide m-chlorophenylhydrazone (CCCP) had a negligible effect either on the redox state or the redox potential of the high potential form of cytochrome b-559 (cytochrome b-559hp). A similar result was obtained with spinach chloroplasts on incubation with 3.3 μm carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), but pea chloroplasts showed a decrease of 10–20% in the amount of reduced cytochrome b-559.Light-induced redox changes of cytochrome b-559 were not observed in untreated spinach chloroplasts. In the presence of CCP or FCCP, cytochrome b-559 was photooxidized both in 655 nm actinic light and in far-red light. Addition of the plastoquinone antagonist, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) to CCCP- or FCCP-treated chloroplasts had only a small effect on the photooxidation of cytochrome b-559 in 655 light, but it completely inhibited the oxidation in far-red light.Electron flow from water to 2,3′,6-trichlorophenolindophenol was partly inhibited by CCCP or FCCP, but the degree of inhibition does not appear to be sufficient to account for the photooxidation of cytochrome b-559.The photooxidation of cytochrome b-559 by 655 nm light at liquid nitrogen temperature was not influenced by prior treatment of the chloroplasts at room temperature with CCCP, DBMIB, or CCCP + DBMIB.The results cannot be explained by the presence of two independent pools of cytochrome b-559 in CCCP-treated chloroplasts, one photooxidized by Photosystem II and the other photooxidized by Photosystem I and photoreduced by Photosystem II.  相似文献   

5.
Helmar Almon  Herbert Böhme 《BBA》1982,679(2):279-286
Isolated heterocysts of the blue-green alga Nostoc muscorum (Anabaena 7119) exhibit high rates of photophosphorylation in systems with cyclic and non-cyclic electron transport. Cyclic photophosphorylation mediated by N-methylphenazonium methosulfate is found to be sensitive to antimycin A, but not to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinon (DBMIB). Non-cyclic electron transport (diaminodurol → methylviologen) coupled to phosphorylation is affected by DBMIB, but not by antimycin A. Studies with uncouplers indicate that ΔpH is the main component of the protonmotive force under continuous illumination. A different effect of NH4Cl on dark- and photophosphorylation is observed and discussed with respect to localization of respiration in blue-green algae.  相似文献   

6.
D. Siefermann  H.Y. Yamamoto 《BBA》1975,387(1):149-158
1. In isolated chloroplasts of Lactuca sativa var. Manoa, the size of the violaxanthin fraction which is available for de-epoxidation is not directly dependent on electron transport but rather related to the reduced level of some electron carrier between the photosystems. This is concluded from the effects of various electrontransport conditions on violaxanthin availability: Under conditions of electron transport through both photosystems, availability was saturated at a lower electron-transport rate with actinic light at 670 than at 700 nm. Under conditions of electron transport through Photosystem I, availability was smaller for linear electron flow from reduced N-methylphenazonium methosulfate via methylviologen to oxygen than for cyclic electron flow mediated by either N-methylphenazonium methosulfate or 2,6-dichlorophenolindophenol; in addition for linear r flow from reduced N-methylphenazonium methosulfate via methylviologen to oxygen, availability increased with decreasing light intensity.2. The postulated carrier whose reduced level is related to availability seems to be some carrier between plastoquinone and the primary acceptor of Photosystem II or plastoquinone itself. This conclusion follows from the fact that availability increased with increasing light intensity under conditions of electron flow through both photosystems and that 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (≤ μM) had no effect on availability, whereas low levels of 3,3-(3′,4′-dichlorophenyl)-1,1-dimethylurea resulted in decreased availability (50% decrease at 1 μM). Furthermore, availability in 3,3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-poisoned chloroplasts was fully restored by 2-methyl-1,4-naphtoquinone (menadione) which mediates cyclic electron flow through plastoquinone.3. Violaxanthin availability was zero in the dark and increased in the light to a maximum of 67% of the total violaxanthin in chloroplasts. It is proposed that this variable violaxanthin availability reflects conformational changes on the internal surface of the thylakoid membrane which result in variable exposure of violaxanthin to the de-epoxidase. The fact that not all of the violaxanthin was available for de-epoxidation may indicate a heterogenous distribution of violaxanthin in the membrane.  相似文献   

7.
The effect of 2-(n-heptyl)-4-hydroxyquinoline N-oxide (HQNO) on the kinetics of cytochrome b-563 and cytochrome c2 turnovers following single-turnover flashes was measured in isolated heterocysts. Low concentrations of HQNO (below 3 μM) blocked reoxidation of cytochrome b-563, whereas higher concentrations (above 5 μM) resulted in additional inhibition of cytochrome b-563 oxidation and also inhibited reduction of cytochrome b-563 and cytochrome c. Similar effects on cytochrome b-563 reduction and reoxidation were obtained with a combination of 5 μM HQNO and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (1–7 μM). In HQNO-inhibited heterocysts, cytochrome c reduction following a flash occurred in three phases with half-times of 0.5, 2.8 and 45 ms. The second phase nearly equalled the cytochrome b-563 reduction in half-time and magnitude. In the presence of HQNO, the reoxidation of cytochrome b-563 following two closely spaced actinic flashes displayed biphasic kinetics. The two phases correspond to reoxidation of cytochrome b-563 in which one or both of the cytochrome b-563 hemes in the cytochrome b–f complex are reduced. These results are interpreted in terms of a Q-loop in which HQNO, at low concentrations, blocks the site of rapid cytochrome b-563 reoxidation and at higher concentrations, also inhibits the site of electron donation by plastoquinol to the cytochrome b-f complex.  相似文献   

8.
The oxidation-reduction midpoint potentials (Em) of the following compounds have been measured in the range of pH from 3 to 12 by polarography: methyl viologen; benzyl viologen; 2-hydroxy-1,4-naphthoquinone; 2-hydroxy-1,4-anthraquinone; N,N,N′,N′,-tetramethyl-p-phenylenediamine;2,3,5,6-tetramethyl-p-phenylenediamine; phenazine; N-methylphenazonium methosulfate; N-methylphenazonium sulfonate methosulfate; N-ethylphenazonium ethosulfate; pyocyanine; neutral red; safranin; phenol red; chlorophenol red; cresol red; bromocresol purple; 2,5-dibromo-3-methyl-6-isopropylbenzoquinone and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole. Many of these previously assumed to have a simple behavior in this range have proven to be rather more complicated, and several anomalous observations have been reconciled.  相似文献   

9.

1. 1. The kinetics of light-induced absorbance changes due to oxidation and reduction of cytochromes were measured in a suspension of intact cells of the unicellular red alga Porphyridium aerugineum. Absorbance changes in the region 540–570 nm upon alternating far-red light and darkness indicated the oxidation of cytochrome ƒ and reduction of cytochrome b563 upon illumination. The relative efficiencies of far-red and orange light indicated that both reactions were driven by Photosystem I.

2. 2. Experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with anaerobic cells and in alternating far-red and orange light indicated that cytochrome b563 reacts in a cyclic chain around Photosystem I, and that the reduced cytochrome does not react with oxygen or with another oxidized product of Photosystem II. The quantum requirement for the photoreduction was about 6 quanta/equiv at 700 nm. A low concentration of N-methylphenazonium methosulphate (PMS) enhanced the rate of reoxidation of cytochrome b563 in the dark. In the presence of higher concentrations of PMS a photooxidation, driven by Photosystem I, instead of reduction was observed. These observations suggest that PMS enhances the rate of reactions between reduced cytochrome b563 and oxidized products of Photosystem I.

3. 3. In the presence of carbonylcyanide m-chlorophenylhydrazone (CCCP) a light-induced decrease of absorption at 560 nm occurred. Spectral evidence suggested the photooxidation of cytochrome b559 under these conditions. Inhibition by DCMU and a relatively efficient action of orange light suggested that this photooxidation is driven by Photosystem II.

Abbreviations: DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; P700, chlorophyllous pigment absorbing at 700 nm, primary electron donor of Photosystem I; PMS, N-methylphenazonium methosulphate  相似文献   


10.
J. Whitmarsh  W.A. Cramer 《BBA》1978,501(1):83-93
Cytochrome b-559, which is normally reduced in the dark, was oxidized by preillumination in the presence of N-methyl-phenazonium methosulfate with low intensity far-red light. The average half-time for the photoreduction of oxidized cytochrome b-559 by a long actinic flash ranged from 90 to 110 ms. In the presence of 0.25 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea the half-time for the photoreduction increased to 230 ms although the extent of the absorbance increase was unchanged. Under similar conditions inhibition of electron transport by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the increase in the chlorophyll fluorescence show that a large fraction of the Photosystem II reaction centers are blocked. These results are consistent with the concept that electrons are shared between different photosynthetic units by a common pool of plastoquinone and imply that the principle pathway for the reduction of cytochrome b-559 by Photosystem II occurs through plastoquinone. In the presence of the uncoupler gramicidin which stimulates non-cyclic electron transport, the rate of photoreduction of cytochrome b-559 is slower (t12 = 180 ms), from which it is inferred that cytochrome b-559 competes with cytochrome f for electrons out of this pool. Comparison of cytochrome b-559 photoreduction and electron transport rates using untreated and KCN-treated chloroplasts indicate that, under conditions of basal electron transport from water to ferricyanide, approximately one-fifth of the electrons from Photosystem II go through cytochrome b-559 to ferricyanide. Further support for this pathway is provided by a comparison of the effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (dibromothymoquinone) on the rates of reduction of cytochrome b-559 and ferricyanide.  相似文献   

11.
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

12.
Cells, of Synechococcus sp. PCC 7002 showed a low oxidationlevel of P700 under a far-red light at 6 W m–2 which inducednearly complete oxidation of P700 in spinach leaves, and a strongerfar-red light was required to observe the oxidation of P700.DCMU did not affect the level of P700+2 but 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinoneinduced the oxidation of P700 under far-red light, indicatingthat the low oxidation level of P700 was due to the donationof electrons to P700+2 from the cytosolic respiratory donorsthrough the intersystem chain at the plastoquinone pool. Theelectron transfer from the cytosolic donors to the intersystemchain was inhibited by HgCl2 but not by antimycin A. The reductionof P700+ in Synechococcus cells, after illumination by strongfar-red light was mostly accounted for by the electron flowto the inter system chain from the respiratory donors (t  相似文献   

13.
Joseph T. Warden 《BBA》1976,440(1):89-97
A 300 μs decay component of ESR Signal I (P-700+) in chloroplasts is observed following a 10 μs actinic xenon flash. This transient is inhibited by treatments which block electron transfer from Photosystem II to Photosystem I (e.g. 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), KCN and HgCl2). The fast transient reduction of P-700+ can be restored in the case of DCMU or DBMIB inhibition by addition of an electron donor couple (2,6-dichlorophenol indophenol (Cl2Ind)/ascorbate) which supplies electrons to cytochrome f. However, this donor couple is inefficient in restoring electron transport in chloroplasts which have been inhibited with the plastocyanin inactivators, KCN and HgCl2. Oxidation-reduction measurements reveal that the fast P-700+ reduction component reflects electron transfer from a component with Em = 375±10 mV (pH = 7.5). These data suggest the assignment of the 300-μs decay kinetics to electron transfer from cytochrome f (Fe2+) to P-700+, thus confirming the recent observations of Haehnel et al. (Z. Naturforsch. 26b, 1171–1174 (1971)).  相似文献   

14.
15.
Flash excitation of isolated intact chloroplasts promoted absorbance transients corresponding to the electrochromic effect (P-518) and the α-bands of cytochrome b6 and cytochrome f. Under conditions supporting coupled cyclic electron flow, the oxidation of cytochrome b6 and the reduction of cytochrome f had relaxation half-times of 15 and 17 ms, respectively. Optimal poising of cyclic electron flow, achieved by addition of 0.1 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea, increased phosphorylation of endogenous ADP and prolonged these relaxation times. The presence of NH4Cl, or monensin plus NaCl, decreased the half-times for cytochrome relaxation to approximately 2 ms. Uncouplers also revealed the presence of a slow rise component in the electrochromic absorption shift, with formation half-time of about 2 ms. The inhibitors of cyclic phosphorylation antimycin and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone abolished the slow rise in the electrochromic shift and prolonged the uncoupled relaxation times of cytochromes b6 and f by factors of ten or more.These observations indicate that cytochrome b6, plastoquinone and cytochrome f participate in a coupled electron transport process responsible for cyclic phosphorylation in intact chloroplasts. Estimations of cyclic phosphorylation rates from 40 to 120 μmol ATP/mg chlorophyll per h suggest that this process can provide a substantial fraction of the ATP needed for CO2 fixation.  相似文献   

16.
Mårten Wikström  Herkko Saari 《BBA》1975,408(2):170-179
Ca2+ induces a red shift in the absorption spectrum of ferrocytochrome a when added to uncoupled mitochondria, sub-mitochondrial particles or isolated cytochrome aa3. The shift is identical within experimental error to the previously reported energy-linked shift in intact mitochondria (Wikström, M. K. F. (1972), Biochim. Biophys. Acta 283, 385–390). One mol of calcium produces the shift in one mol of cytochrome a, the KD being approx. 20–30 μM. The calcium-induced shift is readily reversed by chelating agents such as EDTA, ethyleneglycol-bis-(μ-aminoethyl ether)N,N′-tetraacetic acid (EGTA) and ATP and is insensitive to uncoupling agents and inhibitors of calcium transport (La3+ and ruthenium red). It is shown that the binding site for calcium that is responsible for the spectral shift is located on the outside of the permeability barrier of the mitochondrial cristae membrane.It is proposed that calcium simulates the energy-linked shift in cytochrome a by binding to a site of cytochrome aa3 that is occupied by protons in energized mitochondria and that is located at the external surface of the mitochondrial membrane.  相似文献   

17.
Restoration of a high potential (HP) form of cytochrome b-559 (Cyt b-559) from a low potential (LP) form was the primary process in the reconstitution of O2-evolving center during the photoreactivation of Tris-inactivated chloroplasts. In normal chloroplasts, about 0.5 to 0.7 mol of Cyt b-559 was present in the HP form per 400 chlorophyll molecules. However, the HP form was converted to the LP form when the O2-evolving center was inactivated by 0.8 M alkaline Tris-washing (pH 9.1). The inactivation was reversible and both the Cyt b-559 HP form and the O2-evolving activity were restored by incubating the inactivated chloroplasts with weak light, Mn2+, Ca2+ and an electron donor (photoreactivation). The recovery of the HP form preceded the recovery of O2-evolving activity. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) did not inhibit the recovery of the HP form. Thus, the recovery of Cyt b-559 HP form was the primary reaction in the photoreactivation, which was stimulated by the light-induced redox reaction of the PS-II core center.Abbreviations ASC ascorbate - BSA bovine serum albumin - Chl chlorophyll - Cyt b-559 HP form high potential form of cytochrome b-559 - Cyt b-559 LP form low potential form of cytochrome b-559 - Cyt b-559 VLP form very low potential form of cytochrome b-559 - Cyt f cytochrome f - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenol indophenol - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - HQ hydroquinone - SHN chloroplast-preparation medium containing 0.4 M sucrose, 50 mM Hepes-Na (pH 7.8) and 20 mM NaCl - PS-II Photosystem II  相似文献   

18.
We have previously shown that in the red alga Rhodella violacea, exposure to continuous low intensities of light 2 (green light) or near-saturating intensities of white light induces a ΔpH-dependent PSII fluorescence quenching. In this article we further characterize this fluorescence quenching by using white, saturating, multiturnover pulses. Even though the pulses are necessary to induce the ΔpH and the quenching, the development of the latter occurred in darkness and required several tens of seconds. In darkness or in the light in the presence of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, the dissipation of the quenching was very slow (more than 15 min) due to a low consumption of the ΔpH, which corresponds to an inactive ATP synthase. In contrast, under far-red illumination or in the presence of 3-(3,4-dichlorophenyl)-1,1′-dimethylurea (only in light), the fluorescence quenching relaxed in a few seconds. The presence of N,N′-dicyclohexyl carbodiimide hindered this relaxation. We propose that the quenching relaxation is related to the consumption of ΔpH by ATP synthase, which remains active under conditions favoring pseudolinear and cyclic electron transfer.  相似文献   

19.
The cyanobacterium Chlorogloea fritschii loses Photosystem II activity, measured by delayed fluorescence and oxygen evolution, during dark heterotrophic growth, but retains Photosystem I, measured as light induced EPR signals. Following transition to the light, Photosystem II recovers in two stages, the first of which does not require protein synthesis. New Photosystem I reaction centres are not synthesised until after net chlorophyll synthesis has commenced. Carbon dioxide fixation recovery commences immediately, the initial rate being unaffected by chloramphenicol. The recovery of carbon dioxide fixation is not directly related to oxygen evolution rate and is only inhibited slightly by 3-(3,4-dichlorophyenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone.  相似文献   

20.
W. Rühle  A. Wild 《Planta》1979,146(4):377-385
The oxidation and reduction of cytochrome f and P-700 is measured spectrophotometrically in leaves of low-light and high-light plants. After illumination with red light, an induction phenomenon for cytochrome f oxidation is observed which indicates a regulation of photosystem I activity through energy distribution between the pigment systems by the energy state of the membrane. After far-red excitation the reduction of cytochrome f in the dark is much slower in low-light leaves. This shows that cyclic electron transport is not improved in low-light plants under these conditions. P-700 is oxidized on excitation with far-red light. However, with high intensities of far-red light, P-700 is partially reduced again which is due to a low extent of photosystem II excitation with the far-red used in the experiments. The low-light leaves show greater sensitivity of photosystem II to this excitation. The initial rate of the cytochrome f oxidation-rate is the same in low-light and high-light leaves. This shows that several P-700 are connected with only one electron transport chain. The consequences of these results concerning the tripartite concept and the photosynthetic unit are discussed. In the high-light plants the experimental data can be well explained by the tripartite organization of the photosynthetic unit. In low-light plants, however, a multipartite organization has to be postulated. In the partition regions of the grana, several antennae systems I, antennae systems II, and light-harvesting complexes can communicate with one electron transport chain.Abbreviations CP I P-700-chlorophyll a-protein - Cyt f cytochrome f - DCMU 3-(3,4 dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - LA leaf-area - PhAR photosynthetically active radiation - PS photosystem  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号