首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissociation of insulin from human insulin antibodies has been investigated using a technique that is rapid and does not require addition of excess unlabelled insulin. A slow (k1 = 2·1?3 min?1 and a fast (k2 = 4·10?2 min?1) dissociating antibody component were identified in all studies. These have been shown to correspond, respectively, to the high and low affinity antibody components of equilibrium binding studies. The range of k1 and k2 values and their response to temperature change is small. Insulin resistance and stability of diabetes are not related to properties of antibody dissociation. Dissociation is faster in the presence of high (6–850 nM) insulin concentration due to increased binding to the fast dissociating component without change in the dissociation rate constants. When incubation time is increased beyond achivement of maximal binding there is a time-dependent rise in binding to the slow dissociating component, with a concomitant fall in k1. The traditional concept that equilibrium is established at maximum binding requires further examination.  相似文献   

2.
The cell membranes isolated from bovine corpora lutea bound 3H-prostaglandin (PG) F2α with high affinity and specificity. The specific binding of 3H-PGF2α was detectable at 10?10M added 3H-PGF2α and reached saturation at 10?7M to 10?6M. Unlabeled PGF2α, as low as 10?9M, inhibited the binding of 3H-PGF2α with complete inhibition occurring at 10?6M. The Scatchard analysis of equilibrium binding data revealed that the PGF2α receptors are heterogeneous: Kd1?5.1 × 10?9M, n?289 fmoles/mg protein; Kd2?1.8 × 10?8M, n?780 fmoles/mg protein. The relative affinities of various other PGs for binding to PGF2α receptors were (PGF2α?100%): PGF1α?17.5; PGE1?0.8; PGE2?22.4; PGA1?0.007; PGB1?0.01. The specificity and affinity of 3H-PGF2α binding is consistent with the possibility that this receptor interaction may reflect an initial event in the action of PGF2α as a luteolytic agent.  相似文献   

3.
The cell membranes exhibited specific binding to 3H-prostaglandin E1 (3H-PGE1) and 125I-human chorionic gonadotropin (125I-HCG). Unlabeled PGE1,PGE2 (1.4 × 10?7M), PGF and PGF (1.4 × 10?5M) decreased 3H-PGE1 binding by more than 80%. The binding of 125I-HCG was completely inhibited by 5 × 10?8M unlabeled HCG. However, the unlabeled PGE1 (1.15 × 10?6M) and HCG (8.4 × 10?7M) had no effect on 125I-HCG and 3H-PGE1 binding respectively. A PG antagonist, 7-oxa-13-prostynoic acid, inhibited only 3H-PGE1 binding but not 125I-HCG binding. These results suggest the presence of specific receptors for PGE1 and HCG in the cell membranes and that the binding occurs either at two different sites on the same receptor or that each binds to a “different” receptor molecule.  相似文献   

4.
Previous reports were confirmed that specific binding sites exist on bovine mammary cells near parturition presumably involved in the transfer of immunoglobulins IgG1 and IgG2 across the mammary gland at the time of colostrum formation. Determination of the kinetic parameters of these binding sites using 125I-labeled IgG1 and IgG2 immunoglobulins indicated the presence of sites with association constants (Ka) of about 5 · 108?10 · 108 M?1 for both subclasses during normal lactation with about 9000 and 3000 sites per cell for each, respectively. The number of IgG1 sites tended to increase as the time of parturition approached. In addition, a new group of sites numbering about 5000 per cell with very strong binding of IgG1 (Ka about 45 · 108 M?1) appeared on the cells about a week before parturition. The numbers and affinity of the IgG1 and IgG2 binding sites bear a relationship to the approximate 7:1 ratio of these immunoglobulin subclasses found in colostrum and normal milk and to the time of maximum colostrum formation. The results support the premise that a highly selective transport mechanism exists in the bovine mammary epithelial cell for the transfer of IgG1 and IgG2 immunoglobulins from blood to the lacteal secretions.  相似文献   

5.
Association of a sulfated galactosyl ceramide, sulfatide, with the viral envelope glycoprotein hemagglutinin (HA) delivered to the cell surface is required for influenza A virus (IAV) replication through efficient translocation of the newly synthesized viral nucleoprotein from the nucleus to the cytoplasm. To determine whether the ectodomain of HA can bind to sulfatide, a secreted-type HA (sHA), in which the transmembrane region and cytoplasmic tail were deleted, was generated by using a baculovirus expression system. The receptor binding ability and antigenic structure of sHA were evaluated by a hemagglutination assay, solid-phase binding assay and hemagglutination inhibition assay. sHA showed subtype-specific antigenicity and binding ability to both sulfatide and gangliosides. Kinetics of sHA binding to sulfatide and GD1a was demonstrated by quartz crystal microbalance (QCM) analysis. QCM analysis showed that the sHA bound with the association rate constant (k on) of 1.41?×?104 M?1 sec?1, dissociation rate constant (k off) of 2.03?×?10?4 sec?1 and K d of 1.44?×?10?8 M to sulfatide immobilized on a sensor chip. The k off values of sHA were similar for sulfatide and GD1a, whereas the k on value of sHA binding to sulfatide was 2.56-times lower than that of sHA binding to GD1a. The results indicate that sulfatide directly binds to the ectodomain of HA with high affinity.  相似文献   

6.
Human growth hormone binding sites from female rabbit kidney microsomes were solubilized by treatment with the nonionic detergent Triton X-100. The binding of 125I-labelled human growth hormone to the solubilized sites retains many of the properties observed in the particulate fraction, such as saturability, reversibility, high affinity and structural specificity. The association and the dissociation process are time- and temperature-dependent. The association rate constant, k1, is 1.6·107 mol?1·l·min?1 at 25°C, and the dissociation rate constant, k?1, is 2.8·10?4 min?1 at 25°C. Solubilization causes an increase in affinity as well as in binding capacity. Scatchard plots from saturation curves suggest the presence of a single class of binding site with a dissociation equilibrium constant, Kd, of 1.3·10?11 M and a binding capacity of 133 fmol/mg of protein. Similar results were obtained from competition experiments. Specificity studies revealed the lactogenic characteristics of the solubilized sites. The Stokes radii of the free binding sites and of the 125I-labelled human growth hormone-binding site complex, determined on a Sepharose CL-6B column, are 57 and 53 Å, respectively.  相似文献   

7.
Abstract

Saturation experiments were performed on intact human peripheral mononuclear leucocytes (MNL) and MNL membranes with (-)125Iodocyanopindolol (125ICYP) over a large concentration range (1.5-600pmol/l). The corresponding Scatchard plots were curvilinear suggesting two saturable classes of binding sites: A high affinity binding site (Bmax1=1000±400 sites/cell, Kd1= 2.1±0.9 pmol/l for intact MNL and Bmax1=550±190 sites/cell, Kd1=4.1±0.9 pmol/l for MNL membranes)and a low affinity binding site (Bmax2=9150±3590 binding sites/cell, Kd2=440±50 pmol/l for intact MNL and Bmax2=11560±4690 sites/cell, Kd2=410±70 pmol/l for MNL membranes). Dissociation of (-)125ICYP from MNL was biphasic consisting of a slow dissociating component (dissociation rate constant k-1=(0.5±0.2)x10?3 min?1 for intact MNL and k-1=(1.0±0.1)x10?3min?1 for MNL membranes) and a fast dissociating component (k-2=(80±20)x10?3min?1 for intact MNL and k-2=(60±10)x10?3min?1 for MNL membranes). In dissociation experiments started after equilibration with various (-)125ICYP concentrations k-1 and k-2 were independent of the equilibrium concentration, whereas the percentual occupancy of the slow and the fast dissociating component varied and was similar to the estimated fractional occupancy of either binding site at the same (-)125ICYP concentrations in saturation experiments. The association rate constant was in the same order of magnitude for both binding sites. These results suggest two independent classes of binding sites for (-)125ICYP on MNL.  相似文献   

8.
The binding of the fluorescent analog of adenosine diphosphate (ADP)1, 1,N6-ethenoadenosine diphosphate (εADP) to myosin and its subfragments, heavy meromyosin (HMM) and subfragment one (S1), has been studied under analagous conditions to those previously used in comparable studies on the binding of ADP to these molecules. The results indicate that there are two binding sites for εADP on myosin and HMM, and one site on S1. The dissociation constants for all had an identical value, within experimental error, of 2.0 (± .5) × 10?5 M?1. This is identical to the values found by Young (J. Biol. Chem., 242, 2790 (1967)) for ADP. In addition, the kinetics of hydrolysis of εATP versus ATP by S1 were studied. Values of Vmax and Km were 25 μM phosphate sec?1 (gm protein)?1 and 5 × 10?5 M?1 for ATP, and 80 μN phosphate sec?1 (gm protein)?1 and 45 × 10?5 M?1 for εATP. The results indicate that the increased Vmax that occurs when εATP is used as a substitute for ATP is not due to either an increased binding affinity of ATP for myosin and its subfragments, nor due to a decreased binding affinity of εATP versus ADP. This in turn suggests that the increase in Vmax may be due to an increased hydrolytic rate of εATP vs ATP in the enzyme substrate complex.  相似文献   

9.
Studies of the kinetics of association and dissociation of the formycin nucleotides FTP and FDP with CF1 were carried out using the enhancement of formycin fluorescence. The protein used, derived from lettuce chloroplasts by chloroform induced release, contains only 4 types of subunit and has a molecular weight of 280 000.In the presence of 1.25 mM MgCl2, 1 mol of ATP or FTP is bound to the latent enzyme, with Kd = 10?7 or 2 · 10?7, respectively. The fluorescence emission (λmax 340 nm) of FTP is enhanced 3-fold upon binding, and polarization of fluorescence is markedly increased. The fluorescence changes have been used to follow FTP binding, which behaves as a bimolecular process with K1 = 2.4 · 104 M?1 · s?1. FTP is displaced by ATP in a process apparently involving unimolecular dissociation of FTP with k?1 = 3 · 10?3 s?1. The ratio of rates is comparable to the equilibrium constant and no additional steps have been observed.The protein has 3 sites for ADP binding. Rates of ADP binding are similar in magnitude to those for FTP. ADP and ATP sites are at least partly competitive with one another.The kinetics of nucleotide binding are strikingly altered upon activation of the protein as an ATPase. The rate of FTP binding increases to at least 106 M?1 · s?1. This suggests that activation involves lowering of the kinetic barriers to substrate and product binding-dissociation and has implications for the mechanism of energy transduction in photophosphorylation.  相似文献   

10.
Lymphocyte plasma membranes bind 45Ca2+ with three affinity sites: KAl = 4.0 . 106 M?1, KA2 = 8.5 . 104 M?1 and KA3 = 4.2 . 102 M?1, and Ca2+ binding capacities are 0.10, 1.2 and 85 nmoles Ca2+/mg protein. In the presence of 15 μg/ml ConA the Ca2+ binding constants were KA1 = 4.6 . 106 M?1, KA2 = 4.4 . 104 M?1 and KA3 = 4.2 . 102 M?1. The Ca2+ binding capacity was increased by ConA, to 0.13, 2.4 and 91 nmoles/mg protein. The Ca2+ ATPase activity of lymphocyte membranes was increased by ConA from 1 to 2 μmol P/protein × h. The 45Ca2+ uptake was stimulated by ConA and PHA to about 16 %.  相似文献   

11.
A kinetics of azide binding by horseradish peroxidase was studied by temperature-jump method. It was found that the reaction of the enzyme with azide is quite rapid, occuring in microsecond time range. This rate is unusually rapid in contrast to the usual hemoprotein ferric iron-ligand interactions so far reported. The resulting value for the apparent association and dissociation rate constants were k1=6.8×106 M?1 s?1 and k1=3.5×105 s?1 at 23°C and pH 5.0 for the reaction. The pH dependence of the rate constants was also studied to show a strong linkage of the ligand binding with a proton uptake of a dissociable group on the enzyme.  相似文献   

12.
The kinetics of uptake and retention of β-ecdysone by imaginal discs from late third instar larvae of Drosophila melanogaster correspond well with those of the first synthetic response of discs to hormone, an increase in RNA synthesis.Competition studies indicate the presence of two types of hormone binding sites, specific and non-specific. The specific sites are saturated at hormone concentrations which fully induce morphogenesis. Results are consistent with the hypothesis that analogs which induce morphogenesis at differing concentrations bind to the same sites. Experiments with the inhibitors N-ethylmaleimide, actinomycin d, and cycloheximide suggest that the binding sites are pre-existing in the cell and require functional sulfhydryl groups for binding.Specific binding, binding that is competed by excess unlabeled β-ecdysone, is saturable (70–80 nM). Kinetic rate constants for this specific binding were estimated to be ka = 1.5 × 105M?1 min?1, kd = 3 × 10?2 min?1. The equilibrium dissociation constant calculated from the kinetic rate constants was Keq = 2 × 10?7M compared to 1.7 × 10?7M β-ecdysone required to induce morphogenesis in vitro and 2.5 × 10?7M determined to be the in vivo concentration at the time of induction of morphogenesis.  相似文献   

13.
14.
The thermodynamic parameters, ΔH′, ΔG′, and ΔS′, and the stoichiometry for the binding of the substrate 2′-deoxyuridine-5′-phosphate (dUMP) and the inhibitor 5-fluoro-2′-deoxyuridine-5′-phosphate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) have been investigated using both direct calorimetric methods and gel filtration methods. The data obtained show that two ligand binding sites are available but that the binding of the second mole of dUMP is extremely weak. Binding of the first mole of dUMP can best be illustrated by dUMP + TSase + H+?(dUMP-TSase-H+). [1] The enthalpy, ΔH1′, for reaction [1] was measured directly on a flow modification of a Beckman Model 190B microcalorimeter. Experiments in two different buffers (I = 0.10 m) show that ΔH1′ = ?28 kJ mol?1 and that 0.87 mol of protons enters into the reaction. Analysis of thermal titrations for reaction [1] indicates a free energy change of ΔG1′ = ?30 kJ mol?1 (K1 = 1.7 × 105 m?1). From these parameters, ΔS1′ was calculated to be +5 J mol?1 degree?1, showing that the reaction is almost totally driven by enthalpy changes. Gel filtration experiments show that at very high substrate concentrations, binding to a second site can be observed. Gel filtration experiments performed at low ionic strength (I = 0.05 m) reveal a stronger binding, with ΔG1′ = ?35 kJ mol?1 (K1 = 1.2 × 106 m?1), suggesting that the forces driving the interaction are, in part, electrostatic. Addition of 2-mercaptoethanol (0.10 m) had the effect of slightly increasing the dUMP binding constant. Binding of FdUMP to TSase is best illustrated by 2FdUMP + TSase + nHH+?FdUMP2 ? TSase ? (H+)nH. [2] The enthalpy for this reaction, ΔH2, was also measured calorimetrically and found to be ?30 kJ mol?1 with nH = 1.24 at pH 7.4 Assuming two FdUMP binding sites per dimer as established by Galivan et al. [Biochemistry15, 356–362 (1976)] our calorimetric results indicate different binding energies for each site. Based on the binding data, a thermodynamic model is presented which serves to rationalize much of the confusing physical and chemical data characterizing thymidylate synthetase.  相似文献   

15.
Coherent anti-Stokes Raman scattering spectra, in resonance with the isoalloxazine visible electronic transition, have been obtained down to 300 cm?1 for flavin adenine dinucleotide, riboflavin binding protein and glucose oxidase, in H2O and D2O. Several isoalloxazine vibrational modes can be identified by analogy with those of uracil. Of particular interest is a band at ~1255 cm?1 in H2O, which is replaced by another at ~1295 cm?1, in D2O. The H2O band appears to be a sensitive monitor of H-bonding of the N3 isoalloxazine proton to a protein acceptor group. It shifts down by 10 cm?1 in riboflavin binding protein, and disappears altogether in glucose oxidase. Other band shifts, of 3–5 cm?1, are similar for the two flavoproteins, and may reflect environmental changes between aqueous solution and the protein binding pockets.  相似文献   

16.
Maximum levels of binding of α-bungarotoxin to foetal human brain membranes were found to remain essentially constant at 30–50 fmol/mg protein (1.1–1.5 pmol/g wet weight in whole brain) between gestational ages of 10 and 24 weeks. Equilibrium binding of α-bungarotoxin to both membranes and to detergent extracts showed saturable specific binding to a single class of sites with Kd (app) values of 3.5 × 10?9 M and 2.4 × 10?9 M respectively. Association rate constants, determined from time courses of binding of α-bungarotoxin to membranes and detergent extracts, were 2.3 × 105 M?1 sec?1 and 2.6 × 105 M?1 sec?1 respectively. Dissociation of α-bungarotoxin from both membrane and detergent extracts showed a rapid initial rate with T12 approx 15 min which, in the case of the detergent extract, was followed by a slower dissociation accounting for the remaining 20% of the bound ligand. Competition studies with a number of cholinergic ligands indicated that the α-bungarotoxin-binding sites in foetal brain display a predominantly nicotinic profile.  相似文献   

17.
Cytoplasmic receptors for 1α, 25-dihydroxyvitamin D3 from human parathyroid adenoma tissue and rachitic chick parathyroid glands have been characterized with regard to a number of physical, chemical, and ligand binding properties. Both receptors are 3.6–3.7 S proteins with molecular weights of approximately 75,000 and Stoke's molecular radii of 36 Å. It was found that the receptors possess a cysteine residue in or near the 1α, 25-dihydroxyvitamin D3 binding site which is critical for ligand binding activity. The receptors both have equilibrium dissociation constants for 1α, 25-dihydroxyvitamin D3 in the range of 2 to 5 × 10?10m at 4 °C and second-order association rate constants for their seco-steroid ligand of 1 × 107, m?1 min?1 (0 °C). The dissociation rate constants were found to be 5.3 × 10?4 min?1 (4 °C) for the human receptor and 1.3 × 10?5 min?1 (4 °C) for the chick receptor. The great deal of similarity which exists between the cytoplasmic 1α, 25-dihydroxyvitamin D3 receptors from avian and mammalian parathyroid glands suggests a homologous function for these molecules in the two tissues.  相似文献   

18.
PsbP is an extrinsic protein of PSII having a function of Ca2+ and Cl? retention in the water-oxidizing center (WOC). In order to understand the mechanism how PsbP regulates the Cl? binding in WOC, we examined the effect of PsbP depletion on the protein structures around the Cl? sites using Fourier transform infrared (FTIR) spectroscopy. Light-induced FTIR difference spectra upon the S1→S2 transition were obtained using Cl?-bound and NO3?-substituted PSII membranes in the presence and absence of PsbP. A clear difference in the amide I band changes by PsbP depletion was observed between Cl?-bound and NO3?-substituted PSII samples, indicating that PsbP binding perturbed the protein conformations around the Cl?ion(s) in WOC. It is suggested that PsbP stabilizes the Cl? binding by regulating the dissociation constant of Cl? and/or an energy barrier of Cl? dissociation through protein conformational changes around the Cl? ion(s).  相似文献   

19.
Abstract

[3H]prazosin not only specifically and homogeneously labels α1-adrenoceptors, but also binds to glass surfaces and non-linearly to the glass-fibre filters, commonly used in radioligand binding experiments. Binding to filters can be modulated by unlabeled α-adrenergic compounds and cations. If no correction is applied for displaceable filter binding, analysis of [3H]prazosin binding experiments leads to erroneous results. Analysis of [3H]prazosin saturation experiments on guinea-pig cerebral cortex membranes with correction for filter binding before the non-linear fit procedure indicated that [3H]prazosin labels a homogeneous population of α1-adrenoceptors (Rtot: 8.33 fmol˙mg?1 wet tissue) with a dissociation constant of 1.28×10?10 M. However, analysis of the same data after correction for non-specific binding, (determined in parallel experiments by adding 10 μM phentolamine to the incubation medium) resulted in a best fit to a model in which [3H]prazosin labels two α1-adrenoceptor subpopulations (R1: 15.0 fmol˙mg?1 and R2: 14.6 fmol˙mg?1 wet tissue) with dissociation constants of respectively 1.78×10?10 and 5.63×10?9 M. The discrepancy between the two methods of analysis is due to displacement of the radioligand from the filters by phentolamine.

Prazosin and oxymetazoline are also able to displace filter-bound [3H]prazosin. The extent to which displaceable filter binding distorts the proper results depends on the actual magnitude of the error and also on the method of analysis.  相似文献   

20.
High-affinity, specific binding of radiolabeled α-bungarotoxin to particulate fractions derived from rat brain shows saturability (Bmax ≈ 37fmol/mg, KDapp = 1.7 nM) and insensitivity to ionic strength, and is essentially irreversible (Kon = 5 · 106 min?1 · mol?1; Kdisplacement = 1.9 · 10?4 min?1, τ1/2 = 62 h). Subcellular distribution of specific sites is consistent with their location on synaptic junctional complex and post-synaptic membranes. These membrane-bound binding sites exhibit unique sensitivity to cholinergic ligands; pretreatment of membranes with cholinergic agonists (but not antagonists) induces transformation of α-bungarotoxin binding sites to a high affinity form toward agonist. The effect is most marked for the natural agonist, acetylcholine. These results strongly support the notion that the entity under study is an authentic nicotinic acetylcholine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号