首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Membrane-bound ATPase (EC 3.6.1.3) of Escherichia coli K 12 is released in a soluble form by the mechanical treatments applied to the cells in order to break them. The purification of the soluble enzyme is described. The purified protein gives a single band in 7.5 % polyacrylamide gel electrophoresis. The molecular weight is estimated to be 350 000. The enzyme is cold-labile, Mg2+ dependent, insensitive to inhibition by N,N′-dicyclohexylcarbodiimide and specific for ATP and ADP. Membranes depleted of their ATPase activity by dilution in a buffer of low ionic strength and without Mg2+ are able to incorporate the purified ATPase only in the presence of 2–6 mM Mg2+. ATPase binds to particles formed by complementation between supernatant extracts of chl A and chl B mutants. There are three kinds of particles of different buoyant densities (1.10, 1.18 and 1.23); ATPase binds only to the 1.10 and 1.18 particles. The kinetics of incorporation have been studied. ATPase begins to be incorporated into the 1.10 particles after 10 min of incubation up to a maximum at 20 min: from 30 min, ATPase is incorporated only into 1.18 particles and the amount of incorporated ATPase increases in proportion with the peak of 1.18 particles. These kinetics have a hyperbolic pattern. In order to explain the mechanism of assembly involved in complementation, two hypotheses are proposed.  相似文献   

4.
Membrane-bound ATPase (EC 3.6.1.3) of Escherichia coli K 12 is released in a soluble form by the mechanical treatments applied to the cells in order to break them. The purification of the soluble enzyme is described. The purified protein gives a single band in 7.5% polyacrylamide gel electrophoresis. The molecular weight is estimated to be 350 000. The enzyme is cold-labile, Mg-2+ dependent, insensitive to inhibition by N, N'-dicyclohexylcarbodiimide and specific for ATP and ADP. Membranes depleted of their ATPase activity by dilution in a buffer of low ionic strength and without Mg-2+ are able to incorporate the purified ATPase only in the presence of 2-6 mM Mg-2+. ATPase binds to particles formed by complementation between supernatant extracts of chl A and chl B mutants. There are three kinds of particles of different buoyant densities (1.10, 1.18 and 1.23); ATPase binds only to the 1.10 and 1.18 particles. The kinetics of incorporation have been studied. ATPase begins to be incorporated into the 1.10 particles after 10 min of incubation up to a maximum at 20 min: from 30 min, ATPase is incorporated only into 1.18 particles and the amount of incorporated ATPase increased in proportion with the peak of 1.18 particles. These kinetics have a hyperbolic pattern. In order to explain the mechanism of assembly involved in complementation, two hypotheses are proposed.  相似文献   

5.
Oxidative phosphorylation in intact chl-r mutants of Escherichia coli K 12.   总被引:2,自引:0,他引:2  
The efficiency of oxidative phosphorylation was estimated in intact resting cells of Escherichia coli K 12, strain PA 601 (chl-s) and its chl-r mutants, all of them grown anaerobically in the presence of nitrate. The oxidation of endogenous NADH in intact chl-s cells was accompanied by the formation of ATP whatever the terminal electron acceptor, oxygen or nitrate, so that it was possible to conclude that the energy conservation sites are operating with either of the two acceptors in cells grown anaerobically in the presence of nitrate. For chl-r mutants oxidation of endogenous NADH correlated with ATP-production was found only with oxygen as electron acceptor. It is concluded that the energy-conservation sites are preserved in these mutants, the nitrate respiratory chain of which is altered. This assumption is corroborated by the effects of uncouplers of oxidative phosphorylation on ATP-synthesis.  相似文献   

6.
7.
8.
Summary The nucleotide sequence of the entire nusB gene of Escherichia coli has recently been determined and the amino acid sequence of its product deduced (Ishii et al. 1984; Swindle et al. 1984). The NusB protein was purified by chromatography on Sephadex G-100, phosphocellulose and hydroxylapatite. Purification of the protein was monitored using 14C-labelled NusB protein, which was synthesized in a maxicell containing an nusB plasmid as a marker. The final product, which was at least 95% pure as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, had a molecular weight of about 16,000 and an isoelectric point of about 7.3. Analytical data on the amino acid composition of the purified protein agreed with that deduced from the DNA sequence and indicated that this protein was indeed the product of the nusB gene.Abbreviations SDS sodium dodecyl sulphate - kDa kilodaltons - bp base pair(s) - kbp kilobase pair(s)  相似文献   

9.
10.
11.
1. Anaerobic uptake of proline requires either the presence of a coupled Mg2+-stimulated adenosine triphosphatase or anaerobic electron transport. 2. Anaerobic uptake of glutamine does not require anaerobic electron transport even in the absence of a coupled Mg+2-stimulated adenosine triphosphatase. 3. These results support previous suggestions [Berger (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 1514--1518; Berger & Heppel (1974) J. Biol. Chem. 249, 7747-7755; Kobayashi, Kin & Anraku (1974) J. Biochem. (Tokyo) 76, 251-261] that two distinct mechanisms of energy coupling to active transport exist in Escherichia coli in that energization of anaerobic proline uptake requires the 'high-energy membrane state', whereas the energization of anaerobic glutamine uptake does not.  相似文献   

12.
Summary The presumptive tof gene product of Coli phage 434 has been purified from cells carrying imm434 cIdv plasmid known to contain only some of the early genes of phage 434 and . It was detected and tentatively identified as tof protein primarily by its ability to specifically bind to phage 434 DNA. The protein has a molecular weight of about 11,000 and requires Mg2+ for specific DNA binding, unlike 434 cI-repressor.  相似文献   

13.
14.
NADH-nitrite oxidoreductase (EC 1.6.4) was purified to better than 95% homogeneity from batch cultures of Escherichia coli strain OR75Ch15, which is partially constitutive for nitrite reductase synthesis. Yields of purified enzyme were low, mainly because of a large loss of activity during chromatography on DEAE-cellulose. The quantitative separation of cytochrome c-552 from nitrite reductase activity resulted in an increase in the specific activity of the enzyme: this cytochrome is not therefore an integral part of nitrite reductase. The subunit molecular weights of nitrite reductase and of a haemoprotein contaminant, as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, were 88000 and 80000 respectively. The sedimentation coefficient was calculated to be in the range 8.5-9.5S, consistent with a mol.wt. of 190000. It is suggested therefore that the native enzyme is a dimer with two identical or similar-sized subunits. Purest samples contained 0.4 mol of flavin/mol of enzyme, but no detectable haem. Catalytic activity was totally inhibited by 20 micron-p-chloromercuribenzoate and 1 mM-cyanide, slightly inhibited by 1 micron-sulphite and 10mM-arsenite, but insensitive to 1 mM-2,2'-bipyridine, 4mM-1,10-phenanthroline and 10mM-NaN3. Three molecules of NADH were oxidized for each NO2-ion reduced: the product of the reaction is therefore assumed to be NH4+. The specific activity of hydroxylamine reductase increased at each step in the purification of nitrite reductase, and the elution profiles for these two activities during chromatography on DEAE-Sephadex were coincident. It is likely that a single enzyme is responsible for both activities.  相似文献   

15.
The fhuE gene of Escherichia coli codes for an outer-membrane receptor protein required for the uptake of iron(III) via coprogen, ferrioxamine B and rhodotorulic acid. The amino acid sequence, deduced from the nucleotide sequence, consisted of 729 residues. The mature form, composed of 693 residues, has a calculated molecular weight of 77,453, which agrees with the molecular weight of 76,000 determined by polyacrylamide gel electrophoresis. The FhuE protein contains four regions of homology with other TonB-dependent receptors. A valine to proline exchange in the 'TonB box' abolished transport activity. Phenotypic revertants with substitutions of arginine, glutamine, or leucine at the valine position exhibited increasing iron-coprogen transport rates. Point mutations resulting in the replacement of glycine (127) in the second homology region with either alanine, aspartate, valine, asparagine or histidine exhibited decreased transport rates (listed in descending order). A truncated FhuE protein lacking 24 amino acids at the C-terminal end was exported to the periplasm but failed to be inserted into the outer membrane.  相似文献   

16.
17.
18.
19.
An aminopeptidase (EC 3.4.11.-) capmable of hydrolyzing L-alanyl-beta-naphthyl-amide and certain other aminoacyl beta-naphthylamides was purified to homogeneity from extracts of Exherichia coli K-12. The enzyme, designated aminopeptidase II, is a monomeric protein of mol. wt. 100 000. It exhibits a broad pH optimum in the range pH 7.0--9.0. Although Zn2+, Fe3+ and Cr3+ are strong inhibitors of enzyme activity, a metal requirement for catalysis could not be firmly established. Neither sulfhydryl reagents nor serine protease inhibitors affected enzyme activity.  相似文献   

20.
The dnaB gene product was purified to homogeneity and its physical properties were characterized. Purification was aided by the use of the Escherichia coli strain. MV12/28, which overproduced the dnaB gene product 10-fold (Wickner, S. H., Wickner, R. B., and Raetz, C. R. H. (1976) Biochem. Biophys. Res. Commun. 70, 389-396) and by taking advantage of the enzyme's high affinity for both DEAE-cellulose and phosphocellulose. The most highly purified fractions gave a single stained band on native, polyacrylamide gels and dnaB enzymatic activity was coincident with this band. On denaturing sodium dodecyl sulfate-polyacrylamide gels, a single band was observed corresponding to a molecular weight of 48,000 +/- 2,000. The native molecular weight of 290,000 +/- 12,000 was calculated from determinations of the sedimentation coefficient, which was 11.3 S, and the Stokes radius, which was 60 A. Cross-linking the protein with dimethyl suberimidate yielded six bands. We conclude that the enzyme consists of six identical subunits. The apparent pI was 4.9 and the amino acid composition was typical except for the absence of cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号