首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continuous flow device utilizing a Clark oxygen electrode was constructed; this device had a dead time and resolution of 1 ms. Mixing was tested by observing the neurtralization of acid with base, and at the maximal flow rate, the mixing was 94% complete within 1 ms and better than 98% complete within 2 ms after initial mixing. Observation o of the oxygenation of hemoglobin gave data which agreed with previous data obtained by a stopped-flow optical experiment. The respiration of phosphorylating submitochondrial particles was measured utilizing this device. The burst of respiration in submitochondrial particles was triphasic, with a very rapid burst lasting some 60 ms, followed by a longer burst of respiration lasting more than 4 s.  相似文献   

2.
The uptake of ethidium bromide by rat liver mitochondria and its effect on mitochondria, submitochondrial particles, and F1 were studied. Ethidium bromide inhibited the State 4-State 3 transition with glutamate or succinate as substrates. With glutamate, ethidium bromide did not affect State 4 respiration, but with succinate it induced maximal release of respiration. These effects appear to depend on the uptake and concentration of the dye within the mitochondrion. In submitochondrial particles, the aerobic oxidation of NADH is much more sensitive to ethidium bromide than that of succinate. Ethidium bromide partially inhibited the ATPase activity of submitochondrial particles and of a soluble F1 preparation. Ethidium bromide behaves as a lipophilic cation which is concentrated through an energy-dependent process within the mitochondria, producing its effects at different levels of mitochondrial function. The ability of mitochondria to concentrate ethidium bromide may be involved in the selectivity of the dye as a mitochondrial mutagen.  相似文献   

3.
Alkylguanidines inhibit the respiration of submitochondrial particles oxidizing NADH, while hydrophilic guanidines stimulate the rate of oxygen uptake. Regardless of the effect that a guanidine exerts on respiration, all guanidines tested inhibited the stimulatory action of K+ on the oxygen uptake of submitochondrial particles. It was found also that octylguanidine modified the Arrhenius plot of respiration of the particles. These findings suggest that alkylguanidines exert their action through the interaction of the alkyl chain with a hydrophobic region in the membrane and also through the interaction of the guanidine moiety with a certain locus in the membrane.The results of studies made on the effect of a wide variety of cations on the respiration of submitochondrial particles may be explained on the assumption that in the inner membrane of the mitochondria exists a negatively charged surface or region with which cations can interact. These results also suggest that the stimulation or inhibition of respiration induced by a given cation depends on the ease with which it can move within this hypothetical negative region.  相似文献   

4.
The inhibitory effect of 3-3H-2-n-nonyl-4-hydroxy-quinoline-N-oxide (3H-NQNO) on the respiration induced by NADH or by succinate was studied in submitochondrial particles from beef heart. Polarographic experiments showed that oxygen uptake by submitochondrial particles was inhibited by 3H-NQNO. Similar results were obtained with the unlabelled compound NQNO. The inhibitory activity of 3H-NQNO on the respiration was 2 or 3 times better than that of the heptyl derivatives (HQNO) and additive with that shown by antimycin.  相似文献   

5.
The pathway of electron transfer in NADH:Q oxidoreductase   总被引:1,自引:0,他引:1  
The pre-steady-state reduction by NADPH of NADH:Q oxidoreductase, as present in submitochondrial particles, has been further investigated with the rapid-mixing, rapid-freezing technique. It was found that trypsin treatment, that had previously been used to inactivate the transhydrogenase activity (Bakker, P.T.A. and Albracht, S.P.J. (1986) Biochim. Biophys. Acta 850, 413-422), considerably affected the stability at pH 6.2 of the NAD(P)H oxidation activity of submitochondrial particles. Use of the inhibitor butadione circumvented this problem, thus allowing a more careful investigation of the kinetics at pH 6.2. In the presence of the inhibitor rotenone it was found that 50% of the Fe-S clusters 3 and all of the Fe-S clusters 2 and 4 could be reduced by NADPH within 30 ms at pH 6.2. The remainder of the Fe-S clusters 3 and all of the Fe-S clusters 1 were reduced slowly (complete reduction only after more than 60 s). It was concluded that these latter Fe-S clusters play no role in the NADPH oxidation activity. In the absence of rotenone at pH 6.2 only 50% of the Fe-S clusters 2-4 could be reduced within 30 ms, while Fe-S cluster 1 was again not reduced. This difference was attributed to the fast reoxidation of part of the Fe-S clusters 2 and 4 by ubiquinone. At pH 8.0, where the NADPH oxidation activity is almost zero, 50% of the Fe-S clusters 2-4 could still be reduced by NADPH within 30 ms, while Fe-S cluster 1 was not reduced. The presence of rotenone had no effect on this reduction. From these observations it is concluded that the Fe-S clusters 2 and 4, which were rapidly reduced by NADPH and reoxidised by ubiquinone at pH 6.2, could not be reduced by NADPH at 8.0. This provides an explanation why NADH:Q oxidoreductase was not able to oxidise NADPH at pH 8.0, while part of the Fe-S clusters were still rapidly reduced. As a working hypothesis a dimeric structure for NADH:Q oxidoreductase is proposed. One protomer (B) contains FMN and Fe-S clusters 1-4 in equal amounts; the other protomer (A) is identical except for the absence of Fe-S cluster 1. NADH is able to react with both protomers, while NADPH only reacts with protomer A. A pH-dependent electron transfer from protomer A to protomer B is proposed, which would allow the reduction of Fe-S clusters 2 and 4 of protomer B by NADPH at pH 6.2, which is required for NADPH:Q oxidoreductase activity.  相似文献   

6.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

7.
The uptake of galactosides into Escherichia coli via the lactose permease was studied in the time range 0.01-10s by rapid mixing and quenched flow. An initial transient was observed under two conditions. Firstly, a lag in the approach to the steady state was observed at low galactoside concentrations (less than Km). Secondly, a burst of uptake was observed when anaerobic cell suspensions were mixed with aerobic substrate solutions. However, the cause of the burst of uptake appears to be a burst in the rate of respiration. The rate of galactoside uptake during this phase is 10-fold greater than during the steady state.  相似文献   

8.
Synchronous exocytosis in Paramecium cells was analyzed on a subsecond time scale. For this purpose we developed a quenched flow device for rapid mixing and rapid freezing of cells without impairment (time resolution in the millisecond range, dead time approximately 30 ms). Cells frozen at defined times after stimulation with the noncytotoxic secretagogue aminoethyldextran were processed by freeze substitution for electron microscopic analysis. With ultrathin sections the time required for complete extrusion of secretory contents was determined to be less than 80 ms. Using freeze-fracture replicas the time required for resealing of the fused membranes was found to be less than 350 ms. During membrane fusion (visible 30 ms after stimulation) specific intramembranous particles in the cell membrane at the attachment sites of secretory organelles ("fusion rosette") disappear, possibly by dissociation of formerly oligomeric proteins. This hitherto unknown type of rapid change in membrane architecture may reflect molecular changes in protein-protein or protein-lipid interactions, presumably crucial for membrane fusion. By a modification of the quenched flow procedure extracellular [Ca++] during stimulation was adjusted to less than or equal to 3 x 10(-8) M, i.e., below intracellular [Ca++]. Only extrusion of the secretory contents, but not membrane fusion, was inhibited. Thus it was possible to separate both secretory events (membrane fusion from contents extrusion) and to discriminate their Ca++ requirements. We conclude that no Ca++ influx is necessary for induction of membrane fusion.  相似文献   

9.
A study of the FoF1 ATPase complex of mitochondria isolated from regenerating rat liver following partial (70%) hepatectomy is presented. As we have previously reported, ATPase activity in submitochondrial particles prepared from regenerating rat liver 24 h following partial hepatectomy was depressed by 75% with respect to controls (submitochondrial particles from sham-operated animals). Polyacrylamide gel electrophoresis and immunodecoration using an antibody raised against isolated bovine heart F1 sector of the FoF1 ATPase indicated a substantial decrease in F1 content in the mitochondrial membrane from regenerating rat liver. Proton conduction by the FoF1 ATPase complex was studied by following the anaerobic relaxation of the transmembrane proton gradient (delta mu H+) generated by succinate-driven respiration. In control rat-liver submitochondrial particles containing the FoF1 moiety of the ATPase complex, anaerobic relaxation of delta mu H+ showed biphasic kinetics, whilst the same process in particles derived from regenerating rat liver exhibited monophasic kinetics and was significantly more rapid. Oligomycin and N,N-dicyclohexyl carbodiimide [(cHxN)2C] inhibited proton conductance by the F1-Fo ATPase complex in submitochondrial particles from both control and regenerating rat liver. Binding of [14C](cHxN)2C and immunodecoration using an antibody raised against bovine heart oligomycin-sensitivity-conferring protein (OSCP) indicated no difference in the content of either the (cHxN)2C binding protein or OSCP between control and regenerating rat-liver mitochondrial membranes. The results reported show that the structural and functional integrity of the Fo-F1 ATPase of rat liver is severely perturbed during regeneration.  相似文献   

10.
We used 2,3-butanedione monoxime (BDM) to suppress work by the perfused rat heart and to investigate the effects of calcium on NADH production and tissue energetics. Hearts were perfused with buffer containing BDM and elevated perfusate calcium to maintain the rates of cardiac work and oxygen consumption at levels similar to those of control perfused hearts. BDM plus calcium hearts displayed higher levels of NADH surface fluorescence, indicating calcium activation of mitochondrial dehydrogenases. These hearts, however, displayed 20% lower phosphocreatine levels. BDM suppressed the rates of state 3 respiration of isolated mitochondria. Uncoupled respiration was suppressed to a lesser degree, and the state 4 respiration rates were not affected. Double-inhibitor experiments with liver mitochondria using BDM and carboxyatractyloside (CAT) were used to identify the site of inhibition. BDM at low levels (0-5 mM) suppressed respiration. In the presence of CAT at levels that inhibit respiration by 60%, low levels of BDM were without effect. Because these effects were not additive, BDM does not inhibit adenine nucleotide transport. This was supported by an assay of adenine nucleotide transport in liver mitochondria. BDM did not inhibit ATP hydrolysis by submitochondrial particles but strongly suppressed reversed electron transport from succinate to NAD(+). Oxidation of NADH by submitochondrial particles was inhibited by BDM but oxidation of succinate was not. We conclude that BDM inhibits electron transport at site 1.  相似文献   

11.
Electrophilic agents--derivatives of carbonic acids--are found to inhibit respiration, ATP synthesis and reverse electrone transport in intact mitochondria. The inhibition of respiration and ATPase was observed in intact mitochondria at 3 and 3u states (by Chance). Inhibitors concentrations, which caused 50% inhibition, were approximately the same. Sharp decrease of the effect of electrophilic inhibitors on respiration and ATPase activity in mitochondria and submitochondrial particles with substantially impaired coupling system was observed. The following conclusions are drawn on the basis of the data obtained: 1) electrophilic inhibitor attack the coupling site of respiration and ATP synthesis in mitochondria; 2) the reaction of the proton transport from the respiration proton pump to ATP synthetase is one of the slowest steps of the process of ATP-synthesis in mitochondria. A scheme of working the coupling system is suggested which includes the step of proton lateral diffusion.  相似文献   

12.
The inhibition of succinate- and NADH-oxidase activities of submitochondrial particles by 4,7-diphenyl-1,10-phenantroline was studied. The inhibition was shown to increase when the particles were pretreated with SH-reagents. The treatment of submitochondrial particles with ethanol in the presence of 1,10-phenantroline resulted in a complete inactivation of succinate oxidase and succinate: tetramethyl-n-phenyldiamine reductase; the succinate PMS reductase activity was only partially inhibited after such treatment. It is concluded that tetramethyl-n-phenyldiamine and phenazine metasulfate react with different sites of the succinate dehydrogenase complex. The changes in the properties of submitochondrial particles after ethanol--phenantroline treatment are apparently due to the effect of non-polar solvent rather than to the extraction of non-haem iron.  相似文献   

13.
L Smith  H C Davies  M E Nava 《Biochemistry》1980,19(8):1613-1617
Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and inorganic pyrophosphate partially inhibit the oxidation of exogenous cytochrome c by cytochrome c oxidase of submitochondrial particles (with or without detergent treatment) or by a purified preparation when it is assayed polarographically in buffers of nonbinding ions at pH 7.8. ATP is somewhat more inhibitory than ADP. The inhibition is never greater than 50%, and it is always less than an equal concentration of Mg2+ ions is present or when the assays are run at pH 6. In contrast, the effect of ATP, ADP, and pyrophosphate on oxidase assays run spectrophotometrically is a similar slight stimulation of the oxidase of submitochondrial particles treated with deoxycholate and little or no effect on purified oxidase. The reaction of the oxidase of submitochondrial particles with the endogenous cytochrome c is stimulated by the nucleotides, as is the reduced nicotinamide adenine dinucleotide (NADH) oxidase activity. The observations can be explained by binding of ATP, ADP, or pyrophosphate to cytochrome c so that the formation of an especially reactive combination of cytochrome c and cytochrome oxidase previously postulated [Smith, L., Davies, H. C., & Nava, M. E. (1979) Biochemistry 18, 3140] is prevented. The data give no evidence that respiration via cytochrome c oxidase is regulated physiologically by direct effects of ATP or ADP on its activity.  相似文献   

14.
1. Two allelic mutants of Saccharomyces cerevisiae with a deficiency in the biosynthesis of ubiquinone have been isolated. The properties of one particular mutant strain were investigated. Submitochondrial particles of this strain contain maximally 3% of the amount of ubiquinone in wild-type particles; the amounts of other components of the respiratory chain are essentially normal. 2. The respiratory rates of mutant cells, mitochondria and submitochondrial particles are low with ubiquinone-dependent substrates, but are restored to normal levels by addition of Q-1; the restored respiration is antimycin sensitive. Intact cells and mitochondria show respiratory control both in the absence and presence of Q-1. 3. The NADH:Q-1 oxidoreductase of submitochondrial particles of the mutant followspseudo first-order kinetics in [Q-1]. QH2-1 inhibits competitively with respect to Q-1, the Ki for QH2-1 being equal to the Km for Q-1. 4. Succinate dehydrogenase in both wild-type and mutant submitochondrial particles can be activated by NADH. 5. The turnover number of succinate dehydrogenase in the mutant, measured with phenazine methosulphate as primary electron acceptor, is about one-half that of wild-type particles. The turnover numbers measured with Q-1 as electron acceptor are about the same in the two types of particles. 6. The kinetics of redox changes in cytochrome b, in the presence of antimycin and oxygen, are distinctly different in the mutant and wild-type particles. They indicate that ubiquinone plays an important role in the phenomenon of the increased reducibility of cytochrome b induced by antimycin plus oxygen.  相似文献   

15.
Submitochondrial particles from sweet potato root tissue retainedthe respiratory characteristics of the intact mitochondria withrespect to the sensitivity to cyanide and salicylhydroxamicacid. The activities of total, cyanide-insensitive, and salicylhydroxamate-sensitiverespiration of the submitochondrial particles yielded from adefinite weight of tissue slices incubated under aerobic conditions,particularly in ethylenecontaining air, were higher than thosefrom the same weight of intact tissue. The less phospholipidthe submitochondrial particles contained relative to protein,the higher the activities of cyanide-insensitive and salicylhydroxamate-sensitiverespiration tended to be relative to total respiratory activity.When the submitochondrial particles were incubated with phospholipidliposomes, the activities of cyanide-insensitive and salicylhydroxamate-sensitive,but not cyanide-sensitive, respiration became extremely low.All phospholipids showed this effect. Such incubation of thesubmitochondrial particles with phospholipid liposomes yieldedlighter particles, indicating close association of exogenouslyadded phospholipid with the particles. Phospholipid moleculesseemed to enter the membrane of the particles. We propose thatphospholipid deficiency in the mitochondrial inner membranefacilitates operation of the cyanide-insensitive electron transportpath. (Received March 30, 1984; Accepted June 15, 1984)  相似文献   

16.
Hepatic submitochondrial particles, prepared at neutral pH from rats pretreated with glucagon, exhibited stimulated rates of State 3 and uncoupled respiration when succinate or NADH were the substrates, but not when ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine were employed. Measurements of 8-anilino-1-naphthalenesulfonic acid fluorescence in the particles indicated that glucagon treatment resulted in a stimulation of energization supported by succinate respiration or ATP hydrolysis. Similarly, the energy-linked pyridine nucleotide transhydrogenase and reverse electron flow reactions driven by succinate oxidation or ATP were also stimulated. The results indicate that mitochondrial substrate transport is not the prime locus of glucagon action. It is suggested that the increased level of energization in particles prepared from glucagon-treated rats is a reflection of a stimulation of the respiratory chain, possibly between cytochromes b and c, and the ATP-forming reactions.  相似文献   

17.
In an attempt to determine whether the natural ATPase inhibitor (IF1) plays a role in oxidative phosphorylation, the time course of ATP synthesis and ATP hydrolysis in inside-out submitochondrial particles from beef heart mitochondria either possessing IF1 (Mg-ATP particles) or devoid of IF1 (AS particles) was investigated and compared to movements of IF1, as assessed by an isotopic assay. The responses of the above reactions to preincubation of the particles in aerobiosis with NADH or succinate were as follows: (1) The few seconds lag that preceded the steady-rate phase of ATP synthesis was shortened and even abolished both in Mg-ATP particles and AS particles. The rate of ATP synthesis in the steady state was independent of the length of the lag. (2) ATPase was slowly activated, maximal activation being obtained after a 50-min preincubation; there was no direct link between the development of the protonmotive force (maximal within 1 sec) and ATPase activation. (3) Bound IF1 was slowly released; the release of bound IF1 as a function of the preincubation period was parallel to the enhancement of ATPase activity; the maximal amount of IF1 released was a small fraction of the total IF1 bound to the particles (less than 20%). (4) The double reciprocal plots of the rates of ATP and ITP hydrolysis vs. substrate concentrations that were curvilinear in the absence of preincubation with a respiratory substrate became linear after aerobic preincubation with the substrate. The data conclusively show that only ATPase activity in submitochondrial particles is correlated with the release of IF1, and that the total extent of IF1 release induced by respiration is limited. On the other hand, the kinetics of ATPase in control and activated particles are consistent with the existence of two conformations of the membrane-bound F1-ATPase, directed to ATP synthesis or ATP hydrolysis and distinguishable by their affinity for IF1.  相似文献   

18.
The effects of cobalt and copper complexes with o-phenantroline on the respiratory activity of mitochondria from pea sprouts and submitochondrial particles from bovine heart and on the oxidative phosphorylation in mitochondria were studied. The catalytic activity of the complexes in several components of the respiratory chain autooxidation reactions was investigated. It was shown that the bis (o-phenantroline) cobalt (II) chloride complex is more active in exidation of NADH. The tris (o-phenantroline) cobolt (III) perchlorate complex stimulates the respiratory activity of mitochondria and submitochondrial particles. Possible localization of the effect of this complex was postulated. The (o-phenantroline) copper chloride complex completely inhibits the succinate-dependent respiration of submitochondrial particles and causes disturbances in oxidative phosphorylation of mitochondria.  相似文献   

19.
The effect of phloretin on respiration by isolated mitochondria and submitochondrial particles was studied. In submitochondrial particles, both NADH- and succinate-dependent respiration was inhibited by phloretin. 50% maximum inhibition was reached at phloretin concentrations of 0.1 mM (NADH oxidation) and 0.7 mM (succinate oxidation). In isolated mitochondria, phloretin inhibited glutamate oxidation in both State 3 and State 4; 50% maximum inhibition occurred at about 30 microM. Succinate oxidation is inhibited in State 3 by phloretin, inhibition being half its maximum value at 0.5 mM, but in State 4 it is stimulated about 2-fold by phloretin at a concentration of 0.6 mM. Ascorbate oxidation is stimulated in both State 3 and State 4, maximum stimulation being equal to that obtained with an uncoupler of oxidative phosphorylation. Under all circumstances, phloretin lowered the transmembrane electrical potential difference in isolated mitochondria. These results are discussed in terms of mosaic non-equilibrium thermodynamics. We conclude that phloretin is both an uncoupler and an inhibitor of oxidative phosphorylation.  相似文献   

20.
Studies on the effects of polyamines on oligomycin-sensitive ATPase activity of ox heart submitochondrial particles showed that, of the polyamines tested, only spermine affected the enzyme activity. Spermine within the physiological concentration range increased the Vmax. of the enzyme, but the Km for ATP was virtually unaffected. Binding studies of [14C]spermine to submitochondrial particles, under the same conditions as used for the ATPase assay, showed that the spermine binds to submitochondrial particles in a co-operative way; Hill plots of the data gave a Hill coefficient of 2 and a Kd of 8 microM. When submitochondrial particles were treated with trypsin, ATPase was not stimulated by spermine and the amount of spermine bound concomitantly was drastically decreased. The ATPase activity of isolated F1-ATPase was not affected by spermine. Removal of the natural protein ATPase inhibitor did not suppress either the stimulation of the ATPase activity by spermine or the spermine binding to the particles. The results obtained suggested that the polyamine binds and acts at the level of the liaison between the coupling factor F1 and the membrane sector F0 of the ATPase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号