首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Of the glucose in rat blood 79.8+/-3.3% (s.d.) was in the plasma. The variance was mostly due to differences between rats. 2. The concentration of glucose in erythrocyte water was 51+/-8% (s.d.) of that in plasma water. 3. The ratio (specific radioactivity in plasma)/(specific radioactivity in whole blood), i.e. the P/B ratio, was estimated for glucose at intervals after intravenous injection of [U-(14)C]glucose and [U-(14)C]fructose. The ratio differed from unity by more than the standard error of a single determination of the specific radioactivity of blood or plasma glucose except from 10 to 17min. after injection of [(14)C]glucose and from 22 to 30min. after injection of [(14)C]fructose. At all other times specific radioactivities in blood had to be corrected to give specific radioactivities in plasma. How to do so is described. 4. The P/B ratios were accounted for by a turnover of glucose in erythrocytes of 0.14mumole/min./ml. of erythrocytes. 5. Metabolism of glucose in rat erythrocytes is unlikely to be a major source of lactate.  相似文献   

2.
1. The testis of the ram secretes considerable amounts of amino acids (200μmoles/day) into the fluid collected from the efferent ducts. The principal amino acid in this testicular fluid is glutamate, which is present in concentrations about eight times those in testicular lymph or in blood from the internal spermatic vein. 2. The concentration of glutamate in seminal plasma from the tail of the epididymis is about ten times that in testicular fluid, and, though glutamate is the major amino acid in ejaculated seminal plasma, its concentration is less than in epididymal plasma. 3. After the intravenous infusion of [U-14C]glucose, labelled glutamate was found in the testicular fluid. Radioactivity was also detected in alanine, glycine, serine plus glutamine and aspartate. Alanine had the highest specific activity, about 50% of the specific activity of blood glucose. 4. When [U-14C]glutamate was infused, the specific activity of glutamate in testicular fluid was only about 2% that in the blood plasma. 5. Testicular and ejaculated ram spermatozoa oxidized both [U-14C]glutamate and [U-14C]leucine to a small extent, but neither substrate altered the respiration from endogenous levels. 6. No radioactivity was detected in testicular spermatozoal protein after incubation with [U-14C]glutamate or [U-14C]leucine. Small amounts of radioactivity were detected in protein from ejaculated ram spermatozoa after incubation with [U-14C]glutamate. 7. The carbon of [U-14C]glucose was incorporated into amino acids by testicular spermatozoa; most of the radioactivity occurred in glutamate.  相似文献   

3.
A rapid method for the measurement of [γ-32P]ATP specific radioactivity in tissue extracts containing other 32P-labeled compounds is described. The neutralized acid extract is incubated with cyclic AMP-dependent protein kinase, cyclic AMP and casein. The incorporation of 32P into casein from [γ-32P]ATP is measured by perchloric acid precipitation of the protein on filter paper. 32P-Casein formation is linearly related to the specific radioactivity of the [γ-32P]ATP. Separation of ATP from other 32P-labeled compounds is not required for the assay. Application of this method in the evaluation of [γ-32P]ATP specific radioactivity in two rat cardiac muscle preparations exposed to 32Pi is demonstrated.  相似文献   

4.
Rate determination of protein synthesis utilizing tracer amino acid incorporation requires accurate assessment of the specific radioactivity of the labeled precursor aminoacyl-tRNA pool. Previously published methods presumably useful for the measurement of any aminoacyl-tRNA were unsuccessful when applied to [35S]methionine, due to the unique chemical properties of this amino acid. Herein we describe modifications of these methods necessary for the measurement of 35S-aminoacyl-tRNA specific radioactivity from small tissue samples incubated in the presence of [35S]methionine. The use of [35S]methionine of high specific radioactivity enables analysis of the methionyl-tRNA from less than 100 mg of tissue. Conditions for optimal recovery of 35S-labeled dansyl-amino acid derivatives are presented and possible applications of this method are discussed.  相似文献   

5.
Measurement of protein synthesis in rat lungs perfused in situ   总被引:6,自引:6,他引:0  
Compartmentalization of amino acid was investigated to define conditions required for accurate measurements of rates of protein synthesis in rat lungs perfused in situ. Lungs were perfused with Krebs–Henseleit bicarbonate buffer containing 4.5% (w/v) bovine serum albumin, 5.6mm-glucose, normal plasma concentrations of 19 amino acids, and 8.6–690μm-[U-14C]phenylalanine. The perfusate was equilibrated with the same humidified gas mixture used to ventilate the lungs [O2/CO2 (19:1) or O2/N2/CO2 (4:15:1)]. [U-14C]Phenylalanine was shown to be a suitable precursor for studies of protein synthesis in perfused lungs: it entered the tissue rapidly (t½, 81s) and was not converted to other compounds. As perfusate phenylalanine was decreased below 5 times the normal plasma concentration, the specific radioactivity of the pool of phenylalanine serving as precursor for protein synthesis, and thus [14C]phenylalanine incorporation into protein, declined. In contrast, incorporation of [14C]histidine into lung protein was unaffected. At low perfusate phenylalanine concentrations, rates of protein synthesis that were based on the specific radioactivity of phenylalanyl-tRNA were between rates calculated from the specific radioactivity of phenylalanine in the extracellular or intracellular pools. Rates based on the specific radioactivities of these three pools of phenylalanine were the same when extracellular phenylalanine was increased. These observations suggested that: (1) phenylalanine was compartmentalized in lung tissue; (2) neither the extracellular nor the total intracellular pool of phenylalanine served as the sole source of precursor for protein; (3) at low extracellular phenylalanine concentrations, rates of protein synthesis were in error if calculated from the specific radioactivity of the free amino acid; (4) at high extracellular phenylalanine concentrations, the effects of compartmentalization were negligible and protein synthesis could be calculated accurately from the specific radioactivity of the free or tRNA-bound phenylalanine pool.  相似文献   

6.
The ability of juvenile turbot, Scophthalmus maximus (L.), to elongate and desaturate various polyunsaturated fatty acids (PUFA) was examined in relation to their lipid composition. Triacylglycerols were the most abundant lipid class present in the fish and phosphatidylcholine was the predominant phospholipid. In all lipid classes examined the levels of (n-3) PUFA exceeded that of (n-6) PUFA. 18C PUFA were minor components in comparison with 20:5(n-3) and 22:6(n-3). 20:4(n-6) was present in highest concentration in phosphatidylinositol in which it accounted for 16.9% of the fatty acids. When the fish were injected with either 14C-labelled 18:2(n-6), 18:3(n-3), 20:4(n-6), 20:5(n-3) or 22:6(n-3) the highest percentage recovery of radioactivity (69%) in body lipid was observed with 22:6(n-3). With all labelled substrates free fatty acids contained only a small proportion of the total recovered radioactivity whereas triacylglycerols were highly labelled. Phosphatidylcholine/sphingomyelin was the most highly labelled polar lipid fraction. With 14C-20:4(n-6) as injected substrate, 23.2% of the radioactivity recovered in total lipid was present in phosphatidylinositol in comparison with less than 6% with the other substrates. Only small proportions of radioactivity from 14C-18:2(n-6) and 14C-18:3(n-3) were recovered in the 20 and 22C fatty acids of triacylglycerols and total polar lipid. With 14C-20:5(n-3) as substrate, 27 and 33% of the total radioactivity recovered in the fatty acids of triacylglycerols and polar lipids respectively was present in 22C fatty acids. The corresponding values for l4C-20:4(n-6) as substrate were 19 and 18%. The results confirm the limited capacity of turbot to convert 18C PUFA to longer chain PUFA but demonstrate their ability to synthesize 22C PUFA from 20C PUFA. They also suggest a small but specific requirement for 20:4(n-6).  相似文献   

7.
A new, simple, and accurate method for the sequential determination of the specific radioactivity of [1-14C]glutamic acid and [1-14C]glutamine is described. Using this method, radioactivity in H14CO3?, in [14C]glutamic acid, and in [14C]-glutamine can be readily determined on a single sample of blood plasma. Radioactivity is released as 14CO2 in a stepwise fashion, trapped in the center wells, and counted in a liquid scintillation counter. The applicability of the method is discussed.  相似文献   

8.
The rate of cell loss in irradiated RIF-1, EMT6, KHJJ, B16 and KHT tumours was studied using the 125IUdR loss technique. Administration of 125IUdR preceded localized tumour irradiation by 2 days. Loss of tumour radioactivity was measured for 6–8 days after irradiation. the blood flow to some tumours was occluded during, and for 30 min following, injection of the label to measure the amount of radioactivity entering the tumour as a result of reutilization of label from the gut epithelia and influx of labelled host cells. Irradiation did not significantly alter the amount of radioactivity entering these clamped tumours during the 8–10 days after injection of 125IUdR. This permitted comparison of irradiated and control groups based on the loss of radioactivity from the non-occluded tumours. Irradiation of RIF-1, EMT6, KHJJ or B16 tumours with doses of 600, 1400, 2400 or 4400 rads produced no significant increase in the rate of loss of tumour radioactivity. This suggested that, in the population of labelled cells, cell lysis following irradiation proceeded slowly. In contrast, KHT tumours showed a significant increase in loss rate following each radiation dose, although the increase was dose-independent. In all tumour systems, the constant rate of cell loss after radiation appeared to coincide with published reports of tumour growth responses after irradiation. the present data suggest that the manner of expression of radiation-induced cell killing results from the cellular proliferative status, i.e. whether a cell is cycling or non-cycling.  相似文献   

9.
Abstract—
  • 1 The conditions for incorporation of [14C]glycine in vitro into proteins in the sciatic nerve of chickens have been studied and found to be similar to those of rat nerve.
  • 2 Its incorporation decreases, however, linearly with age.
  • 3 The content of RNA and of DNA of peripheral nerve and the RNA/DNA ratio alter linearly with age.
  • 4 There is also a linear relationship between the specific radioactivity of the protein extract and the RNA content of the nerve.
  • 5 There is a linear decline with age in the specific radioactivity of the protein fraction when expressed against the DNA content.
  • 6 A linear relationship exists between the logarithm of the specific radioactivity and the length of the femur.
  相似文献   

10.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

11.
The classic solutions based on specific activity curves for the kinetic analysis of 45Ca movements in three compartment cellular systems cannot be used when the extracellular compartment is one to two orders of magnitude larger than the cellular or tissue compartments. However if the relative radioactivity curve (tracer uptake curve) is analyzed it is possible to calculate all the relevant kinetic parameters. This paper offers the solutions based on relative radioactivity measurements for the calculation of exchange rates, rate constants and compartment sizes of three compartment systems, for series and parallel cases, for closed and open systems.  相似文献   

12.
A 4 day half-life of dopamine beta-hydroxylase (DBH) was determined for rats injected IV with 125I-rat DBH from the slow exponential component of radioactivity appearing in plasma, urine, feces and combined urine and feces. Half-life estimates for 125I-rat DBH injected IV into WKY and SHR animals did not differ from Sprague Dawley (Zivic Miller) rats. Radioactivity declined in parallel in plasma, urine and feces following IV 125I-rat DBH administration and each radioactivity falloff curve could be resolved into two components. The slow phase of the decline of radioactivity excreted into urine and feces from which DBH half-life was calculated occurred between 5 and 25 days after 125I-rat DBH injection. The early fast phase which is associated with distribution of the exogenous protein in body fluids and tissues continued for approximately the first 140 hr after DBH injection. The distribution characteristics of IV administered active bovine DBH and 125I-rat DBH into the lymphatic system were examined. After active bovine DBH or 125I-rat DBH was injected IV into rats, active DBH or radioactivity, respectively, appeared in lymph fluid (thoracic duct) within 20 min; reached peak concentrations within 90 min, and thereafter, declined in parallel with the plasma concentration. The concentration of radioactivity in plasma and lymph fluid were found to be unequal at 9 hr but were equivalent 68–75 hrs after IV injection of 125I-rat DBH. Based on the amount of active DBH or radioactivity which accumulates in lymph fluid it is clear that'a substantial amount (> 50%) of the DBH in blood circulates through the lymphatic channels. Analysis of parallel experiments with labelled serum albumin indicate that use of these methods to study plasma proteins do provide sensitive measures of biological half-life and lymphatic distribution characteristics. Specifically for DBH, the results of our study suggest that DBH normally circulates in plasma and lymph fluid with a biological half-life of 4 days.  相似文献   

13.
The aim of the present study was to determine whether exogenous radioactive GABA and glutamate previously taken up by rat brain synaptosomes are released preferentially with respect to the endogenous unlabeled amino acids. Preferential release was monitored by comparing the specific radioactivity of the amino acids released to that present in synaptosomes at the beginning and at the end of the release period. The GABA released spontaneously or by depolarizing the synaptosomes with high K+ in the presence of Ca2+ had the same specific radio-activity as that present in synaptosomes before or after superfusion. Depolarization with veratridine or superfusion with OH-GABA caused a moderate increase (15–20%) in the specific radioactivity of the GABA released and a corresponding slight decrease in that of superfused synaptosomes. In conditions causing a supraadditive release of exogenous and endogenous GABA (see ref. 13), the specific radioactivity of the GABA released was increased 20–30%. The GABA with higher-than-average specific radioactivity is probably representative of the cytoplasmic pool of this amino acid. The glutamate released spontaneously had a specific radioactivity lower than that present in synaptosomes at the start of superfusion, and also the specific radioactivity in superfused synaptosomes was lower than at the start of superfusion. The glutamate released by aspartate (by heteroexchange), by veratridine, or by high K+ had a specific radioactivity higher than that of the amino acid released spontaneously, similar to that present in synaptosomes at the start of superfusion, and higher than that found in superfused synaptosomes. These findings suggest that exogenous radioactive glutamate is released preferentially with respect to the endogenous amino acid and to the glutamate synthesized from glucose during the superfusion period.  相似文献   

14.
During laparatomy the ovary in the luteal phase with the ovarian pedicle was isolated and transferred under stereomicroscope. The ovary was supplied with blood flowing out of the facial artery through a cannula. 3H-oestradiol-17β or 51Cr-labelled red blood cells (51Cr-RBC) were infused for 30 min through the cannula inserted into the ovarian vein 3 cm below the ovary. During and 30 min after the 3H-oestradiol-17β infusion, radioactivity was found both in the ovarian arterial blood near the ovary and in ovarian tissue. When 51Cr-RBC were infused in the same way as 3H-oestradiol, there was no radioactivity in the arterial blood or ovarian tissue. These experiments indicate the existence of a counter current transfer of 3H-oestradiol-17β from the ovarian vein into the ovarian artery in a cow's ovarian pedicle.  相似文献   

15.
Metabolism of 14C-arachidonate was investigated in rat isolated lungs perfused via the pulmonary circulation with Krebs solution. Only 10% of the radioactivity derived from an infusion of 14C-arachidonate through the pulmonary circulation of rat isolated lungs appeared in the effluent by 10 minutes. At 10 min, the major component of effluent radioactivity and 20–40% of that retained in lung was unchanged arachidonate. Between 10 and 20 min of perfusion, a further small amount of radioactivity was lost in lung effluent and at 20 min the retained radioactivity showed a decrease in the proportion present as free arachidonate. Between 20 and 60 min, there was no further loss of radioactivity in effluent and no further change in the distribution in lung. Addition of albumin to the Krebs solution perfusate during the infusion of 14C-arachidonate increased effluent radioactivity to 80%, but albumin added after 10 min only caused the efflux of a small amount of radioactivity (10%). Treatment of labelled lung at 20 min with the calcium ionophore A23187 released biologically active metabolites of arachidonate but very little radioactivity. Metabolism of arachidonate, either during the infusion or after retention in lung, in rat lung was closer to that in human lung than to that in guinea-pig lung.  相似文献   

16.
Mice infected with Echinococcus granulosus were given one dose of 15 mg kg?1 of 14C-mebendazole by gavage. Blood, hydatid cyst fluid and membranes were collected and counted at varying intervals thereafter. Radioactivity in blood peaked by 16 h and declined rapidly thereafter. Activity in hydatid cyst fluid paralleled that in blood but in amounts of only 5–10%. While levels of radioactivity in hydatid cyst membranes for the most part paralleled those of blood, in several samples they remained stable or increased from 16 to 48 h while those in blood had decreased to baseline. Protoscolices lost all signs of viability by 48 h after treatment.  相似文献   

17.
R K Rhamy  H E Hadd 《Steroids》1973,22(5):719-729
After the administration of 4-14C-testosterone to a woman bearing an interstitial cell ovarian tumor, the presence of two metabolites were identified in the blood. 14C-androstenedione comprised 3% of the radioactivity in the free fraction and androstenedione 3-enol glueuronide comprised 0.5% of the radioactivity in the glucuronide fraction.  相似文献   

18.
The specific radioactivity of a choline phospholipid has been determined by a double-isotope method. Purified phospholipid was hydrolyzed to release labeled choline, and choline kinase was employed to label the choline with 32P from [γ-32P]ATP. The double-labeled phosphorylcholine was purified by ion-exchange chromatography on QAE-Sephadex, and the specific radioactivity of the choline was calculated from the isotope ratio. The method is sensitive, requiring only 5 nmol of choline with a specific radioactivity of 1 μCl/μmol, and the chromatographic isolation of phosphorylcholine is simple and reproducible.  相似文献   

19.
U-14C-phenylalanine and 3-14C-cinnamic acid were fed to detached Polygonum leaves through the cut petioles and to the bases of detached wheat leaves. After feeding, the leaves were divided into basal, middle and terminal segments; for each treatment of each plant more than 80% of the total radioactivity incorporated remained in the basal segment. The distribution of radioactivity between ethanol-soluble and insoluble fractions in each segment was examined. The basal segments contained more insoluble radioactivity than the terminal ones; the differences were far more marked for both plants when cinnamate rather than phenylalanine was administered. In view of the gross differences in distribution of radioactivity between the basal and terminal segments of each leaf, it is concluded that basal infusion of precursors is not the most suitable technique for studies of phenolic biosynthesis.  相似文献   

20.
The incorporation of sodium acetate-[1-14C] into the heterocyst glycolipids of Anabaena cylindrica cultures from 60–234 hr old is reported. Incorporation of radioactivity was maximal in 88 hr old cultures. In 60 hr and 88 hr cultures about 90 % of the radioactivity of the heterocyst glycolipids was found in the non-saponifiable glycolipid fraction, whereas in older cultures this fraction contained only 75 % of the radioactivity. Acid hydrolysis of non-saponifiable heterocyst glycolipid fractions showed that in 60 hr cultures, 81 % of the radioactivity occurs in the lipid moiety, whereas in older cultures a greater proportion (40–53 %) of the radioactivity was found in the sugar residue. The lipid fraction obtained by acid hydrolysis contained a mixture of labelled long chain mono-, di- and trihydric alcohols. In young (60 hr) cultures the primary alcohol fraction was most heavily labelled (57.3 % of the radioactivity in the non-saponifiable glycosides) with much smaller amounts in the diol and triol (8.4 and 15.1 % respectively), whereas in older cultures (234 hr) the primary alcohol (23.6 %) diol (22.5 %) and triol (18.9 %) fractions contained ca equal amounts of radioactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号