首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Do rat cardiac myocytes release ATP on contraction?   总被引:1,自引:0,他引:1  
ATP is released by numerous cell types in response to mechanical strain. It then acts as a paracrine or autocrine signaling molecule, inducing a variety of biological responses. In this work, we addressed the question whether mechanical force acting on the membranes of contracting cardiomyocytes during periodic longitudinal shortening can stimulate the release of ATP. Electrically stimulated isolated adult rat cardiomyocytes as well as spontaneously contracting mouse cardiomyocytes derived from embryonic stem (ES) cells were assayed for ATP release with the use of luciferase and a sensitive charge-coupled device camera. Sensitivity of soluble luciferase in the supernatant of cardiomyocytes was 100 nM ATP, which is 10-fold below the EC50 values for most purinergic receptors expressed in the heart (1.5–20 µM). Light intensities were not different between resting or contracting adult rat cardiomyocytes. Similar results were obtained with ES-cell-derived contracting mouse cardiomyocytes. ATP release was measurable only from obviously damaged or permeabilized cells. To increase selectivity and sensitivity of ATP detection we have targeted a recombinant luciferase to the sarcolemmal membrane using a wheat germ agglutinin-IgG linker. Contraction of labeled adult rat cardiomyocytes was not associated with measurable bioluminescence. However, when human umbilical vein endothelial cells were targeted with membrane-bound luciferase, shear stress-induced ATP release could be clearly detected, demonstrating the sensitivity of the detection method. In the present study, we did not detect ATP release from contracting cardiomyocytes on the single cell level, despite adequate sensitivity of the detection system. Thus deformation of the contracting cardiomyocyte is not a key stimulus for the release of cellular ATP. cardiomyocytes; luciferase  相似文献   

2.
The effect of fluidic conditions on the bioluminescent detection of ATP in a microfluidic device was surveyed using homemade detector system. The bioluminescent reaction of ATP was directly affected by the retention time and flow rates of the solutions in this diffusion-based mixing and reaction system due to the laminar flow in the microchannel. ATP and enzyme solutions were separately injected into the microfluidic device at different flow rates through 3 inlet ports. The ATP solution was injected through the middle port, while the enzyme solution was injected in the two remaining ports. When the ratio of ATP to enzyme solution was fixed, the optimum flow rates of enzyme, ATP, and enzyme solution was 3.5, 8.0, and 3.5 μL/min, respectively. The optimal total flow rate was 15 μL/min. The detection limit for the concentration of ATP at optimal conditions was less than 10−7 M.  相似文献   

3.
Through statistically designed experiments, lysis agents were optimized to effectively disrupt bacterial cells in a microfluidic device. Most surfactants caused the efficient lysis of Gram-positive microbes, but not of Gram-negative bacteria. A Plackett-Burman design was used to select the components that increase the efficiency of the lysis of the Gram-negative bacteriaEscherichia coli. Using this experimental design, both lysozyme and benzalkonium chloride were shown to significantly increase the cell lysis efficiency, and ATP was extracted in proportion to the lysis efficiency. Benzalkonium chloride affected the cell membrane physically, while lysozyme destroyed the cell wall, and the amount of ATP extracted increased through the synergistic interaction of these two components. The two-factor response-surface design method was used to determine the optimum concentrations of lysozyme and benzalkonium chloride, which were found to be 202 and 99 ppm, respectively. The lysis effect was further verified by microscopic observations in the microchannels. These results indicate that Gram-negative cells can be lysed efficiently in a microfluidic device, thereby allowing the rapid detection of bacterial cells using a bioluminescence-based assay of the released ATP.  相似文献   

4.
In this study, we report a double-receptor sandwich supramolecule sensing method for the determination of adenosine triphosphate (ATP). One receptor is a uranyl-salophen complex which can bind the triphosphate group in ATP selectively, and another is an anti-adenosine aptamer which is a single-stranded oligonucleotide and can recognize the adenosine group in ATP specifically. The uranyl-salophen complex was immobilized on the surface of amino-silica gel particles and used as the solid phase receptor of ATP. The anti-adenosine aptamer was labeled with a fluorescent group and used as the labeled receptor of ATP. In the procedure of ATP detection, ATP was first combined with the solid phase receptor and then conjugated with the labeled receptor to form a sandwich-type supramolecule. The conditions of fabricating solid phase receptor and the influence of manifold variables on the determination were studied. The experimental results demonstrate that the method has a number of advantages such as high selectivity, high sensitivity, good stability and low cost. Under optimal conditions, the linear range for detection of ATP is 0.2-5.0 nmol/mL with a detection limit of 0.037 nmol/mL. The proposed method was successfully applied for the determination of ATP in real samples with the recoveries of 96.8-103.3%.  相似文献   

5.
A novel molecular aptamer beacon (MAB) was designed by integrating a single-labeled hairpin-shaped aptamer and graphene oxide (GO). The hairpin-shaped aptamer was constructed with anti-ATP aptamer and another five nucleotides added to the 5'-end of the aptamer which are complementary to nucleotides at the 3'-end of the aptamer to form a hairpin-shaped probe. This newly designed MAB which acts as a low background signal platform was used for the ATP detection based on long-range resonance energy transfer (LrRET). In the absence of ATP, the adsorption of the dye-labeled hairpin-shaped aptamer on GO makes the dyes close proximity to GO surface resulting in high efficiency quenching of fluorescence of the dyes. Therefore, the fluorescence of the designed MAB is completely quenched by GO, and the system shows very low background. Conversely, and very importantly, upon the adding of ATP, the quenched fluorescence is recovered significantly, and ATP can be detected in a wide range of 5-2500μM with a detection limit of 2μM and good selectivity. Moreover, when the GO-based MAB was used in cellular ATP assays, preeminent fluorescence signals were obtained, thus the platform of GO-based MAB could be used to detect ATP in real-world samples.  相似文献   

6.
Erythrocytes are proposed to be involved in blood flow regulation through both shear- and oxygen-dependent mechanisms for the release of adenosine triphosphate (ATP), a potent vasodilator. In a recent study, the dynamics of shear-dependent ATP release from erythrocytes was measured using a microfluidic device with a constriction in the channel to increase shear stress. The brief period of increased shear stress resulted in ATP release within 25 to 75 milliseconds downstream of the constriction. The long-term goal of our research is to apply a similar approach to determine the dynamics of oxygen-dependent ATP release. In the place of the constriction, an oxygen permeable membrane would be used to decrease the hemoglobin oxygen saturation of erythrocytes flowing through the channel. This paper describes the first stage in achieving that goal, the development of a computational model of the proposed experimental system to determine the feasibility of altering oxygen saturation rapidly enough to measure ATP release dynamics. The computational model was constructed based on hemodynamics, molecular transport of oxygen and ATP, kinetics of luciferin/luciferase reaction for reporting ATP concentrations, light absorption by hemoglobin, and sensor characteristics. A linear model of oxygen saturation-dependent ATP release with variable time delay was used in this study. The computational results demonstrate that a microfluidic device with a 100 µm deep channel will cause a rapid decrease in oxygen saturation over the oxygen permeable membrane that yields a measurable light intensity profile for a change in rate of ATP release from erythrocytes on a timescale as short as 25 milliseconds. The simulation also demonstrates that the complex dynamics of ATP release from erythrocytes combined with the consumption by luciferin/luciferase in a flowing system results in light intensity values that do not simply correlate with ATP concentrations. A computational model is required for proper interpretation of experimental data.  相似文献   

7.
A highly sensitive ATP bioluminescence assay with diethylaminoethyl-dextran (DEAE-Dx) in the presence of ATP extractants such as trichloroacetic acid (TCA) and Triton X-100 is described. These ATP extractants inhibited the activity of firefly luciferase, resulting in a remarkable decrease in the intensity of light emission. However, DEAE-Dx enhanced the intensity of light emission as long as firefly luciferase was active in the presence of the ATP extractants. When DEAE-Dx was used for the assay, the detection limits for ATP in the presence of TCA and Triton X-100 were 0.3 and 0.5 pM, respectively, in aqueous ATP standard solution. The detection limit in the presence of DEAE-Dx was improved 13- to 20-fold compared to that in the absence of DEAE-Dx. The method was applied to the determination of ATP in Escherichia coli extracts. When a 5% solution of TCA was used for the extraction of ATP from E. coli cells, the detection limit corresponded to 250 cells ml(-1) of E. coli.  相似文献   

8.
One unique to detect cytotoxicity is to utilize reporter gene assays for promoters that respond to stress-induced effects. In the present study, we discovered that the DNA sequence from nt -287 to +110 of the heat shock protein 70B' (HSP70B') gene could be used as a functional promoter to detect cytotoxicity of cadmium chloride. We thus detected cytotoxicity induced by cadmium chloride with the luciferase assay using this functional HSP70B' promoter, as well as the cell viability test based on the quantification of intracellular ATP. The luciferase assay using the functional HSP70B' promoter resulted in nearly maximal luciferase activity after only 12 h of exposure to cadmium chloride, however, with intracellular ATP quantification, the decrease in cell viability only reached a plateau after 24 h of exposure. Cytotoxicity detection limits for cadmium chloride with the functional HSP70B' promoter assay or cell viability based on ATP quantification were 130 ng/mL and 530 ng/mL, respectively. Our results therefore suggest that the novel reporter gene assay using a functional region of the HSP70B' promoter has significant advantages for the detection of cytotoxicity in terms of both speed and sensitivity, when compared to the cell viability test based on ATP quantification.  相似文献   

9.
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization and microtubule stabilization. To understand the mechanism of action of a kinesin it is important to understand how the chemical cycle of ATP turnover is coupled to the mechanical cycle of microtubule interaction. To dissect the ATP turnover cycle, one approach is to utilize fluorescently labeled nucleotides to visualize individual steps in the cycle. Determining the kinetics of each nucleotide transition in the ATP turnover cycle allows the rate-limiting step or steps for the complete cycle to be identified. For a kinesin, it is important to know the rate-limiting step, in the absence of microtubules, as this step is generally accelerated several thousand fold when the kinesin interacts with microtubules. The cycle in the absence of microtubules is then compared to that in the presence of microtubules to fully understand a kinesin’s ATP turnover cycle. The kinetics of individual nucleotide transitions are generally too fast to observe by manually mixing reactants, particularly in the presence of microtubules. A rapid mixing device, such as a stopped-flow fluorimeter, which allows kinetics to be observed on timescales of as little as a few milliseconds, can be used to monitor such transitions. Here, we describe protocols in which rapid mixing of reagents by stopped-flow is used in conjunction with fluorescently labeled nucleotides to dissect the ATP turnover cycle of a kinesin.  相似文献   

10.
ATP生物发光测定试剂研究进展   总被引:1,自引:0,他引:1  
萤火虫荧光素酶是ATP生物发光试剂的关键组成部分,可通过萤火虫尾提取纯化或基因工程技术制备,酶的活力和纯度决定了ATP生物发光试剂的性能。迄今许多先进技术在ATP生物发光试剂的制备中均有应用,包括酶基因工程改造技术、ATP循环的酶法放大技术、荧光素酶蛋白的活力及发光稳定技术,特异的细胞ATP提取技术等。ATP生物发光试剂的研究焦点主要集中在提高发光试剂的检测灵敏度和性能、增加产品的适应性等方面。  相似文献   

11.
The manufacturing processes of many electronic and medical products demand the use of high-quality water. Hence the water supply systems for these processes are required to be examined regularly for the presence of microorganisms and microbial biofilms. Among commonly used bacteria detection approaches, the ATP luminescence assay is a rapid, sensitive, and easy to perform method. The aim of this study is to investigate whether ATP regeneration from inorganic pyrophosphate, a product of the ATP luminescence assay, can stabilize the bioluminescence signals in ATP detection. ADPglc pyrophosphorylase (AGPPase), which catalyzes the synthesis of ATP from PPi in the presence of ADPglc, was selected because the system yields much lower luminescence background than the commercially available ATP sulfurylase/adenosine 5′-phosphosulfate (APS) system which was broadly used in pyrosequencing technology. The AGPPase-based assay could be used to measure both PPi and ATP quantitatively and shows 1.5- to 4.0-fold slight increases in a 10-min assay. The method could also be used to stabilize the luminescence signals in detection of Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus in either broth or biofilm. These findings suggest that the AGPPase-based ATP regeneration system will find many practical applications such as detection of bacterial biofilm in water pipelines.  相似文献   

12.
A real-time, sensitive, and simple assay for detection and quantification of adenosine triphosphate sulfurylase (ATP:sulfate adenylytransferase, EC 2.7.7.4) activity has been developed. The method is based on detection of ATP generated in the ATP sulfurylase reaction between APS and PPi by the firefly luciferase system. For the Saccharomyces cerevisiae ATP sulfurylase, the concentrations of APS and PPi at the half-maximal rate were found to be about 0.5 and 7 microM, respectively. The assay is sensitive and yields linear response between 0.1 microU and 50 mU. The method can be used for monitoring and quantification of recombinant ATP sulfurylase activity in Escherichia coli lysate, as well as for detection of the activity during different purification procedures.  相似文献   

13.
研究了ATP生物荧光检测法与国标法《GB4789.2-2010食品卫生微生物学检验菌落总数测定》检测鸡蛋壳表面细菌总数的相关性。采用ATP生物荧光检测法和国标法对40个混合样品表面细菌总数进行检测,以log CFU/个蛋壳为横坐标(x),以logRLU/个蛋壳为纵坐标(y),分别进行线性、对数、乘幂、指数拟合。结果表明,ATP荧光检测法与国标法检测结果 Pearson相关系数为0.912,线性模型y=0.7306x-1.0041(R2=0.8322)拟合度较高。该试验结果为ATP荧光检测法在鸡蛋壳表面细菌总数快速检测中应用的可行性提供了依据。  相似文献   

14.
The rate of phosphorylation of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles by ITP and ATP was studied using a millisecond mixing and quenching device. The rate of phosphorylation was slower when the vesicles were preincubated in a Ca2+-free medium than when preincubated with Ca2+, regardless of the substrate used and of the pH of the medium. When the vesicles were preincubated with Ca2+ at pH 7.4 an overshoot of phosphorylation was observed in the presence of ITP. The overshoot was abolished when the pH of the medium was decreased to 6.0 or when the vesicles were preincubated in a Ca2+-free medium. Using vesicles preincubated with Ca2+ the apparent Km for ITP found was 2.5 mM at pH 6.0 and 1.0 mM at pH 7.4. The Vmax observed (77 mumol g-1 s-1) did not change with the pH of the medium. Both at pH 6.0 and 7.4 the apparent Km for ATP was 3 microM when preincubated in a Ca2+-free medium. At pH 6.0 the Vmax for ATP varied from 96 to 33 mumol g-1 s-1 depending on whether the vesicles were preincubated in the presence or absence of Ca2+. At pH 7.4 the Vmax for ATP was 90 mumol g-1 s-1 in both conditions. The rate of phosphorylation of the vesicles was dependent on the relative Ca2+ and Mg2+ concentrations of the reaction medium regardless of the substrate used.  相似文献   

15.
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.  相似文献   

16.
ATP in bile is a potent secretogogue, stimulating biliary epithelial cell (BEC) secretion through binding apical purinergic receptors. In response to mechanosensitive stimuli, BECs release ATP into bile, although the cellular basis of ATP release is unknown. The aims of this study in human and mouse BECs were to determine whether ATP release occurs via exocytosis of ATP-enriched vesicles and to elucidate the potential role of the vesicular nucleotide transporter SLC17A9 in purinergic signaling. Dynamic, multiscale, live cell imaging (confocal and total internal reflection fluorescence microscopy and a luminescence detection system with a high sensitivity charge-coupled device camera) was utilized to detect vesicular ATP release from cell populations, single cells, and the submembrane space of a single cell. In response to increases in cell volume, BECs release ATP, which was dependent on intact microtubules and vesicular trafficking pathways. ATP release occurred as stochastic point source bursts of luminescence consistent with exocytic events. Parallel studies identified ATP-enriched vesicles ranging in size from 0.4 to 1 μm that underwent fusion and release in response to increases in cell volume in a protein kinase C-dependent manner. Present in all models, SLC17A9 contributed to ATP vesicle formation and regulated ATP release. The findings are consistent with the existence of an SLC17A9-dependent ATP-enriched vesicular pool in biliary epithelium that undergoes regulated exocytosis to initiate purinergic signaling.  相似文献   

17.
Semiconductor nanocrystals, often known as quantum dots, have been used extensively for a wide range of applications in bioimaging and biosensing. In this article, we report that the pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as a proton sensor to detect proton flux that was driven by ATP synthesis in chromatophores. To confirm that these QD-labeled chromatophores were responding to proton flux pumping driven by ATP synthesis, N,N'-dicyclohexylcarbodiimide (DCCD) was used as an inhibitor of ATPase activity. Furthermore, we applied the QD-labeled chromatophores as a virus detector to detect the H9 avian influenza virus based on antibody-antigen reaction. The results showed that this QD virus detector could be a new virus-detecting device.  相似文献   

18.
In this report, I describe a method for rapid measurement of total adenylate (ATP + ADP + AMP) in marine sediment samples for estimating microbial biomass. A simple ‘boil and dilute’ method is described here, whereby adding boiled MilliQ water to sediments increases the detection limit for ATP + ADP + AMP up to 100-fold. The lowered detection limit of this method enabled the detection ATP + ADP + AMP in relatively low-biomass sub-seafloor sediment cores with 104 16S rRNA gene copies per gram. Concentrations of ATP + ADP + AMP correlated with 16S rRNA gene concentrations from bacteria and archaea across six different sites that range in water depth from 1 to 6000 m indicating that the ATP + ADP + AMP method can be used as an additional biomass proxy. In deep sea microbial communities, the ratio of ATP + ADP + AMP concentrations to 16S rRNA genes >1 m below seafloor was significantly lower compared to communities in the upper 30 cm of sediment, which may be due to reduced cell sizes and or lower ATP + ADP + AMP concentrations per cell in the deep sea sub-seafloor biosphere. The boil and dilute method for ATP + ADP + AMP is demonstrated here to have a detection limit sufficient for measuring low biomass communities from deep sea sub-seafloor cores. The method can be applied to frozen samples, enabling measurements of ATP + ADP + AMP from frozen sediment cores stored in core repositories from past and future international drilling campaigns.  相似文献   

19.
Ischemic pain--examples include the chest pain of a heart attack and the leg pain of a 30 s sprint--occurs when muscle gets too little oxygen for its metabolic need. Lactic acid cannot act alone to trigger ischemic pain because the pH change is so small. Here, we show that another compound released from ischemic muscle, adenosine tri-phosphate (ATP), works together with acid by increasing the pH sensitivity of acid-sensing ion channel number 3 (ASIC3), the molecule used by sensory neurons to detect lactic acidosis. Our data argue that ATP acts by binding to P2X receptors that form a molecular complex with ASICs; the receptor on sensory neurons appears to be P2X5, an electrically quiet ion channel. Coincident detection of acid and ATP should confer sensory selectivity for ischemia over other conditions of acidosis.  相似文献   

20.
We report herein the G-quadruplex-selective property of a luminescent cyclometallated iridium(III) complex for the detection of adenosine-5′-triphosphate (ATP) in aqueous solution. The ATP-binding aptamer was employed as the ATP recognition unit, while the iridium(III) complex was used to monitor the formation of the G-quadruplex structure induced by ATP. The sensitivity and fold enhancement of the assay were higher than those of the previously reported assay using the organic dye crystal violet as a fluorescent probe. This label-free luminescent switch-on assay exhibits high sensitivity and selectivity towards ATP with a limit of detection of 2.5 µM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号