首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varda Kahn 《Phytochemistry》1985,24(5):915-920
In studies dealing with melanogenesis in mammalian tissues, ultrastructural localization of enzymes, identification of subcellular organelles, differentiation and lignification in plant tissues, it is important to have means to differentiate between tyrosinase and peroxidase activities. For a variety of reasons, established criteria used for this purpose are not always reliable. We suggest that tropolone can aid in differentiating between tyrosinase and peroxidase activities since: (a) it is a very effective inhibitor of tyrosinase; (b) in the presence of hydrogen peroxide it can serve as a substrate for peroxidase; (c) at concentrations that inhibit tyrosinase, it does not inhibit peroxidase activity; and (d) it inhibits tyrosinase activity even in the presence of hydrogen peroxide and peroxidase. In a system containing a mixture of tyrosinase and peroxidase, tropolone can differentiate reliably between peroxidase and monohydroxyphenolase or o-dihydroxyphenolase activities of tyrosinase. Moreover, tropolone can differentiate reliably between peroxidase and tyrosinase activities using slices or crude dialysed extracts of various plant tissues.  相似文献   

2.
Tyrosinase from normal human skin was purified to high specific activity; 228 nmol of dopa formed/min/mg protein. The properties of the purified enzyme differ from those of the same enzyme in crude homogenates. The activity of the purified enzyme is not affected by dopa. It is not inhibited by excess tyrosine and exhibits no lag in its rate at 4 mm concentration of ascorbic acid. This preparation is free of peroxidase and yet will catalyze both hydroxylation of tyrosine to dopa and its further oxidation to dopa quinone with fourfold more activity with dopa as substrate suggesting that mammalian tyrosinase catalyzes both reactions rather than dopa oxidation alone as suggested by M. Okun, L. Edelstein, R. Patel, and B. Donnellan (1973, Yale J. Biol. Med.46, 535–540). A protein present in the cytosol and melanosomes that constitutes 30% of soluble epidermal proteins was purified and found to inhibit tyrosinase competitively with tyrosine. Its molecular weight was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 66,000.  相似文献   

3.
Melanosomes scavenged tyrosyl radical that was generated by ultraviolet irradiation of tyrosine. Purified mushroom tyrosinase also removed tyrosyl radical in a dose-dependent manner. To elucidate the underlying mechanism, we analyzed the reaction of mushroom tyrosinase with tyrosyl radical generated by horseradish peroxidase and hydrogen peroxide. Resting tyrosinase, which contained a small amount of oxytyrosinase, did not oxidize tyrosine to DOPAchrome until horseradish peroxidase exhausted H(2)O(2) and thereafter the enzyme recovered its full activity. During the inhibition period most tyrosine was converted to dityrosine, suggesting that only a small amount of tyrosyl radical was enough to interact with a fraction of tyrosinase which was in the active oxy-form. When horseradish peroxidase and H(2)O(2) were added to oxytyrosinase, which was prepared by allowing it to turn over beforehand, DOPAchrome production was abolished with an accelerated consumption of H(2)O(2). Dityrosine formation was totally suppressed and tyrosine concentration stayed constant during the inhibition period with a concomitant production of O(2). The results are accounted for by a mechanism in which tyrosyl radical is reduced to tyrosine by oxytyrosinase and the resulting met-form reacts with H(2)O(2) to return to the oxy-form.  相似文献   

4.
The enzyme system responsible for Amphibian Kupffer Cell (KC) melanogenesis has not been entirely elucidated. This research demonstrates that the KC melanosomes of Rana esculenta L. possess a tyrosine-hydroxylase (TH) activity, showing that a tyrosinase is the enzyme involved in the melanogenesis. The TH reaction depends on catalytic Dopa as a cofactor and is not affected by catalase or H2O2, showing that it is catalysed by the tyrosinase and not by the peroxidase present in the melanosomes. The TH reaction is activated by Cu2+ ions but not by other tyrosinase activators such as limited proteolysis, protein ageing, and Sodium Dodecyl Sulphate (SDS). SDS inhibited the KC TH activity even below the critical micelle concentration. All these results suggest that the KC-tyrosinase differs in structure from other known tyrosinases. Using anti-KC-tyrosinase antobodies, we observed that the sites of the tyrosinase location within the cell are the same as those described in the melanocytes. In the immunoblots, the anti-KC-tyrosinase antibodies also recognised two protein bands, at the higher molecular weight ranges, in the protein electrophoretic pattern. Moreover, the tyrosinase activity was limited to the highest molecular weight band of about 260 kDa, suggesting that the enzyme activity could depend on a molecular aggregate. The melanin produced in the liver was found to be a 5,6-dihydroxyindole-rich eumelanin similar to the Sepia melanin.  相似文献   

5.
Tyrosinase isolated from cultured human melanoma cells was studied for tyrosine oxygenation activity. l -Tyrosine and d -tyrosine were used as substrates and dopa was measured with HPLC and electrochemical detection as the product of oxygenation. Incubations were performed in the presence or absence of dopamine as co-substrate. Oxygenation of l -tyrosine occurred only in the presence of dopamine as co-substrate. No oxygenation of d -tyrosine was found, and we conclude that human tyrosinase is characterised by exclusive specificity for the l -isomer of tyrosine in its oxygenase function. It has recently been suggested that superoxide anion is a preferential oxygen substrate for human tyrosinase. Incubations were therefore performed with l - and d -tyrosine, human tyrosinase, and xanthine/xanthine oxidase in the system, generating superoxide anion and hydrogen peroxide. Considerable formation of dopa was observed, but the quantity was the same irrespective of whether d -tyrosine or l -tyrosine was used as the substrate. Furthermore, formation of dopa occurred in a xanthine/xanthine oxidase system when bovine serum albumin (BSA) was substituted for tyrosinase. Our results provide no evidence that superoxide anion is an oxygen substrate for human tyrosinase. In the incubate containing xanthine/xanthine oxidase, catalase completely inhibited dopa formation, and superoxide dismutase and mannitol each strongly inhibited dopa formation. The results are compatible with hydroxyl radicals being responsible for the formation of dopa, since such radicals may be secondarily formed in the presence of superoxide anion and hydrogen peroxide.  相似文献   

6.
The enzymes of hydrogen peroxide metabolism have been investigated in the cestodes H. diminuta and M. expansa. Neither catalase, lipoxygenase, glutathione peroxidase, NADH peroxidase nor NADPH peroxidase could be detected in homogenates of either species. However, both H. diminuta and M. expansa possessed a peroxidase which had a high affinity for reduced cytochrome c. The peroxidase was characterized by substrate and inhibitor studies and cell fractionation showed the enzyme to be located in the mitochondrial membrane fraction. The peroxidase could act as a substitute for catalase, by destroying metabolic hydrogen peroxide. Appreciable superoxide dismutase activity was found in M. expansa and H. diminuta and it is possible that this enzyme is the source of helminth hydrogen peroxide.  相似文献   

7.
The activity of tyrosinase, the rate-limiting enzyme for melanin synthesis, is higher in Black skin melanocytes than in melanocytes derived from Caucasian skin. This variation in enzyme activity is not due to differences in tyrosinase abundance or tyrosinase gene activity, but, rather, is due to differences in the catalytic activity of preexisting tyrosinase. In melanocytes, tyrosinase is localized to the membrane of melanosomes and in Caucasian melanocytes the melanosome-bound enzyme is largely inactive. Conversely, in melanosomes of Black melanocytes, tyrosinase has high catalytic activity. Treatment of Caucasian melanocytes with the lysosomotropic compound ammonium chloride or with the ionophores nigericin and monensin results in a rapid and pronounced increase in tyrosinase activity. This increase occurs without any change in tyrosinase abundance, indicating that these compounds are increasing the catalytic activity of preexisting enzyme. Inhibition of the vacuolar proton pump V-ATPase by treatment of Caucasian melanocytes with bafilomycin also increases tyrosinase activity. In contrast to the 10-fold increase in tyrosinase observed in Caucasian melanocytes, neither ammonium chloride, monensin, nigericin, nor bafilomycin is able to increase the already high level of tyrosinase activity present in melanosomes of melanocytes derived from Black skin. Finally, staining of Caucasian melanocytes with the fluorescent weak base acridine orange shows that melanosomes of Caucasian, but not Black, melanocytes are acidic organelles. These data support a model for racial pigmentation that is based on differences in melanosome pH in Black and Caucasian skin types. The models suggests that melanosomes of Caucasian melanocytes are acidic, while those of Black individuals are more neutral. Since tyrosinase is inactive in an acid environment, the enzyme is largely inactive in Caucasian melanosomes but fully active in Black melanosomes.  相似文献   

8.
Summary Tyrosinase activity increased in Cloudman S-91 mouse melanoma cell homogenates incubated at 37°C for a minimum of 8 h. Enzyme activity continued to increase for 48h at which time the maximal level of activation was observed. Activation did not occur at 4°C and did not occur in the cytosol fraction of the cell, suggesting that the response was localized to melanosomes. The activated enzyme was resistant to solubilization with the nonionic detergent, Triton X-100, and preparation of homogenates in this detergent did not inhibit the temperature-dependent activation of the melanosomal fraction of the cell. The activation process increased the V Max of tyrosinase 10-fold and lowered the K M by a factor of 2 as determined by the tyrosine hydroxylase assay. The increase in tyrosinase activity was detectable by three assay methods: tyrosine hydroxylation, melanin synthesis, and by tyrosine decarboxylation. The formation of melanin, however, was found to be 1/20 that of either tyrosine hydroxylation or decarboxylation, a finding which suggests that the melanin pathway may be blocked at 5,6-dihydroxyindole. The “self-activation” response could not be mimicked by incubating cell homogenates with cyclic AMP-dependent protein kinase. Activated tyrosinase could be inhibited by the addition of fresh cell extracts, a finding which suggests that tyrosinase inhibitors may be present in these cells. This investigation was supported by Public Health Service grants CA41425 and CA30393 awarded by the National Cancer Institute, Bethesda, MD and by a research grant from the Proctor and Gamble Company.  相似文献   

9.
Human TRP-1 has been immunopurified from normal human melanocytes cultured from black neonatal subjects and used to investigate the catalytic function of TRP-1 for the two substrates, L-tyrosine and L-DOPA. Immunopurified TRP-1 did not demonstrate DOPA staining on SDS/PAGE nor DOPA oxidase (DO) activity with either routine or modified assays. The purified TRP-1 also demonstrated no tyrosine hydroxylase (TH) activity using the routine Pomerantz assay. However, there was apparent TH activity exhibited by immunopurified TRP-1 under conditions with low tyrosine concentration (≤0.8 μCi/ml of 3H-tyrosine), prolonged incubation time (i.e., overnight) and in the absence of the cofactor L-DOPA. Using these latter specific conditions, TH activity was also detected in cell lysates from a tyrosinase-negative albino melanocyte line which exhibited no TH activity with the routine Pomerantz assay. In addition, TH activity under low substrate assay conditions was not exhibited in a melanocyte line derived from a TRP-1 deficient, Brown albino individual. However, the absence of TH in this Brown albino cell line could be compensated for by the addition of L-DOPA to the assay. These results suggested that TRP-1 has some tyrosine hydroxylase but no DOPA oxidase activity. We propose that one function of TRP-1 is to modulate tyrosinase activity by making DOPA available as a cofactor to perpetuate the initial steps in melanogenesis.  相似文献   

10.
Transfer of tyrosinase to melanosomes in Harding-Passey mouse melanoma   总被引:3,自引:0,他引:3  
The transfer of tyrosinase from microsomes into melanosomes, without passing through the cytosol in the Harding-Passey mouse melanoma cell, was confirmed by experiments carried out using a combination of radioisotope tracer techniques and immunoprecipitation. 3H-Labeled amino acid incorporation into tyrosinase present in the microsome, melanosome, and soluble fractions confirmed the precursor-product relationship of the enzyme in the microsome fraction and in the melanosome fraction. However, two forms of the enzyme, Ts1- and Ts2-tyrosinase, separated from the soluble fraction by polyacrylamide gel electrophoresis, were shown to play no role in the transfer since little or no incorporation of radioactivity into tyrosinase in this fraction was found. It is suggested that most tyrosinase observed in the soluble fraction does not leak from the melanosomes or the microsomes during homogenization, but comes from necrotic tumor cells. It appears that melanosomal and microsomal tyrosinase might be released from the membrane of necrotic cells modified by various degradation enzymes, considering the data on the recovery of tyrosinase from the soluble fraction, where one-third of total enzyme activity in the postnuclear fraction could not be increased, even when the postnuclear fraction of the tumor was further homogenized radically.  相似文献   

11.
Effects of inhibitors of tyrosine kinases (K-252a, genistein) and of phospholipase A2 (bromophenacetyl bromide) on viability of PC12 cells are studied in the presence of hydrogen peroxide and ganglioside GM1. The degree of inhibition of hydrogen peroxide cytotoxic effect by ganglioside GM1 amounted to 52.8 +/- 4.3 %. However, in the presence in the medium of 0.1 and 1 microM inhibitors of tyrosine kinase of Trk-receptors (K-252a) it was as low as 32.7 +/- 6.5 % and 11.7 +/- 9.8 %, respectively. GM1 prevented Na+, K+-ATPase produced by H2O2, but in the presence of 1 microM K-252a this effect was practically not pronounced. In the presence of another inhibitor of tyrosine kinases--genistein, a tendency for a decrease of the GM1 protective effect was observed at its concentrations 0.1 and 1 microM, whereas at a higher concentration 10 microM genistein depressed the GM1 neuroprotective effect statistically significantly. It was found that inhibitor of phospholipase A2 bromophenacetyl bromide did not affect the action of GM1 aimed at increasing the viability of cells under action of hydrogen peroxide on them. It seems that this enzyme is not involved in the cascade of reactions participating in realization of the ganglioside protective effect. Thus, inhibitor of tyrosine kinase of Trk-receptors K-252 decreases or practically prevents the ganglioside GM1 neuroprotective effect of PC12 cells under stress conditions; the same ability is characteristic of genistein--an inhibitor of tyrosine kinases of the wider spectrum of action.  相似文献   

12.
We report the first characterization and classification of Orf13 (S. refuineus) as a heme-dependent peroxidase catalyzing the ortho-hydroxylation of L-tyrosine to L-DOPA. The putative tyrosine hydroxylase coded by orf13 of the anthramycin biosynthesis gene cluster has been expressed and purified. Heme b has been identified as the required cofactor for catalysis, and maximal L-tyrosine conversion to L-DOPA is observed in the presence of hydrogen peroxide. Preincubation of L-tyrosine with Orf13 prior to the addition of hydrogen peroxide is required for L-DOPA production. However, the enzyme becomes inactivated by hydrogen peroxide during catalysis. Steady-state kinetic analysis of L-tyrosine hydroxylation revealed similar catalytic efficiency for both L-tyrosine and hydrogen peroxide. Spectroscopic data from a reduced-CO(g) UV-vis spectrum of Orf13 and electron paramagnetic resonance of ferric heme Orf13 are consistent with heme peroxidases that have a histidyl-ligated heme iron. Contrary to the classical heme peroxidase oxidation reaction with hydrogen peroxide that produces coupled aromatic products such as o,o'-dityrosine, Orf13 is novel in its ability to catalyze aromatic amino acid hydroxylation with hydrogen peroxide, in the substrate addition order and for its substrate specificity for L-tyrosine. Peroxygenase activity of Orf13 for the ortho-hydroxylation of L-tyrosine to L-DOPA by a molecular oxygen dependent pathway in the presence of dihydroxyfumaric acid is also observed. This reaction behavior is consistent with peroxygenase activity reported with horseradish peroxidase for the hydroxylation of phenol. Overall, the putative function of Orf13 as a tyrosine hydroxylase has been confirmed and establishes the first bacterial class of tyrosine hydroxylases.  相似文献   

13.
In the melanocyte, tyrosinase is known as the dey enzyme for melanin formation. Purified tyrosinase protein was prepared that was capable of oxidizing tyrosine. The localization of tyrosinase antigen in the melanocyte was studied using antiserum against tyrosinase. DOPA (L-3,4-dihydroxyphenylalanine)-reaction product and tyrosinase antigen were found on the same organelles i.e., premelanosomes, melanosomes, GERL, and Golgi vesicles. This result seems to suggest that it is cytochemically appropriate to use DOPA as the substrate of tyrosinase. It appeared that tyrosinase antigen was present as granule-like structures inside GERL cisterna and associated with its membrane.  相似文献   

14.
Esculetin has been described as an inhibitor of tyrosinase and polyphenol oxidase and, therefore, of melanogenesis. In this work, we demonstrate that esculetin is not an inhibitor but a substrate of mushroom polyphenol oxidase (PPO) and horseradish peroxidase (POD), enzymes which oxidize esculetin, generating its o-quinone. Since o-quinones are very unstable, the usual way of determining the enzymatic activity (slope of recordings) is difficult. For this reason, we developed a chronometric method to characterize the kinetics of this substrate, based on measurements of the lag period in the presence of micromolar concentrations of ascorbic acid. The catalytic constant determined was of the same order for both enzymes. However, polyphenol oxidase showed greater affinity (a lower Michaelis constant) than peroxidase for esculetin. The affinity of PPO and POD towards oxygen and hydrogen peroxide was very high, suggesting the possible catalysis of both enzymes in the presence of low physiological concentrations of these oxidizing substrates. Taking into consideration optimum pHs of 4.5 and 7 for POD and PPO respectively, and the acidic pHs of melanosomes, the studies were carried out at pH 4.5 and 7. The in vivo pH might be responsible for the stronger effect of these enzymes on L-tyrosine and L-3,4-dihydroxyphenylanaline (L-DOPA) (towards melanogenesis) and on cumarins such as esculetin towards an alternative oxidative pathway.  相似文献   

15.
In the present study, we investigated how cytochrome c catalyzed the nitration of tyrosine at various pHs. The cytochrome c-catalyzed nitration of tyrosine occurred in proportion to the concentration of hydrogen peroxide, nitrite or cytochrome c. The cytochromec-catalyzed nitration of tyrosine was inhibited by catalase, sodium azide, cystein, and uric acid. These results show that the cytochrome c-catalyzed nitrotyrosine formation was due to peroxidase activity. The rate constant between cytochrome c and hydrogen peroxide within the pH range of 3-8 was the largest at pH 6 (37 degrees C). The amount of nitrotyrosine formed was the greatest at pH 5. At pH 3, only cytochromec-independent nitration of tyrosine occurred in the presence of nitrite. At this pH, the UV as well as visible spectrum of cytochrome c was changed by nitrite, even in the presence of hydrogen peroxide, probably via the formation of a heme iron-nitric oxide complex. Due to this change, the peroxidase activity of cytochrome c was lost.  相似文献   

16.
Cloning of sucrase genes from Streptococcus mutans in bacteriophage lambda   总被引:4,自引:0,他引:4  
Abstract An extracellular peroxidase was purified by chromatofocusing column chromatography from the growth medium of ligninolytic cultures of the white-rot fungus Phanerochaete chrysosporium Burds BKM-1767. The enzyme was electrophoretically pure with an M r of 45 000–47 000. It contained an easily dissociable heme, and required Mn2+ ions for activity. In the presence of hydrogen peroxide and Mn2+ it oxidized compounds such as vanillylacetone, 2,6-dimethyloxyphenol, curcumin, syringic acid, guaiacol, syringaldazine, divanillylacetone, and coniferyl alcohol. It did not oxidize veratryl alcohol. In reactions requiring Mn2+ and O2, but not hydrogen peroxide, the enzyme oxidized glutathione, dithiothreitol, and NADPH with production of hydrogen peroxide. The hydrogen peroxide produced could be used as a co-substrate by ligninases such as those that oxidize veratryl alcohol, or by the peroxidase itself to oxidize lignin model compounds.  相似文献   

17.
Effects of inhibitors of tyrosine kinases (K-252a, genistein) and of phospholipase A2 (bromophenacyl bromide) on viability of PC12 cells are studied in the presence of hydrogen peroxide and ganglioside GM1. The degree of inhibition of hydrogen peroxide cytotoxic effects by ganglioside GM1 amounted to 52.8 ± 4.2%. However, in the presence in the medium of 0.1 and 1 μM inhibitors of tyrosine kinase of Trk-receptors (K-252a) it was as low as 32.7 ± 6.5% and 11.7 ± 9.8%, respectively. GM1 prevented Na+,K+-ATPase oxidative inactivation produced by H2O2, but in the presence of 1 μM K-252a this effect was practically not pronounced. In the presence of another inhibitor of tyrosine kinases-genistein, a tendency for a decrease of the GM1 protective effect was observed at its concentrations 0.1 and 1 μM, whereas at a higher concentration 10 μM, genistein depressed statistically significantly the GM1 neuroprotective effect. It was found that inhibitor of phospholipase A2 bromophenacyl bromide did not affect the action of GM1 aimed at increasing the viability of cells under action of hydrogen peroxide on them. It seems that this enzyme is not involved in the cascade of reactions participating in realization of the ganglioside protective effect. Thus, inhibitor of tyrosine kinase of Trk-receptors K-252a decreases or practically prevents the ganglioside GM1 neuroprotective effect on PC12 cells under stress conditions; the same ability is characteristic of genistein—an inhibitor of tyrosine kinases of the wider spectrum of action.  相似文献   

18.
Human tyrosinase (5.5 mg) has been purified from a single human melanotic melanoma metastasis (50.5 g). In the presence of dioxygen, L-tyrosine proved to be a very poor substrate for this enzyme with barely detectable activity compared to L-dopa. However, saturating superoxide anion (i.e., greater than 5 x 10(-3) M) enhanced the oxidation rate of L-tyrosine to dopachrome 40-fold. Hydrogen peroxide was shown to be a competitive inhibitor of tyrosinase when L-tyrosine was the substrate. This reversible inhibition is based on a slow pseudocatalase activity for tyrosinase. Monothiols and dithiols inhibit tyrosinase by different mechanisms. Reduced human thioredoxin and 2,3-dithiopropanol are allosteric inhibitors of tyrosinase yielding bis-cysteinate complexes with one of the copper atoms in the enzyme active site. Bis-cysteinate tyrosinase activity is down-regulated to 30% of native enzyme activity in the L-dopa assay; suggesting a true regulatory role for dithiols. Monothiols such as reduced glutathione and beta-mercaptoethanol are much less reactive with tyrosinase although 10(-3) M monothiol totally inhibits enzyme activity. Reduced thioredoxin inhibits tyrosinase 23-fold more than reduced glutathione under the same experimental conditions.  相似文献   

19.
Various peroxidases in the presence of hydrogen peroxide and a halide ion have been shown to exert a cytolytic activity against erythrocytes and other cells. However, few studies have been done to elucidate the active site on the enzymes that is responsible for the cytotoxic activity. In addressing this question we found that boiling of horseradish peroxidase only partially abolishes its cytotoxic activity, suggesting that an intact tertiary structure of the protein may not be essential for the cytotoxic activity. This conclusion was confirmed by demonstrating that microperoxidase, hemin, and hematoheme also exert cytotoxic activity in the presence of hydrogen peroxide and iodide, the kinetics of which were identical to those obtained with the peroxidases. Fluoride, bromide, and thiocyanate could not replace iodide in any of these systems. These results indicate that the active site for the cytotoxic activity of the peroxidases is located within the heme moiety, whereas the protein portions of the enzymes affect the cytotoxic activity of the enzymes only in an indirect manner. We also tested a variety of compounds for their ability to inhibit the cytolytic reaction toward erythrocytes. We found that compounds such as thiourea, thionicotinamide, and uric acid are much more potent inhibitors of the cytolytic reaction than tyrosine and histidine. These observations support the concept that oxidative reactions rather than halogenation reactions are the primary cause of the peroxidase-mediated lysis of erythrocytes.  相似文献   

20.
Utilizing two cytochemical methods, namely, diaminobenzidine for the assay of peroxidases and cerium(III) chloride for the localization of hydrogen peroxide it was found that the enzyme exists in two out of the five egg-shell layers: the innermost choronic layer and the endochorion. In addition, hydrogen peroxide which acts as a substrate for the enzyme in vitro enabling the formation of covalent bonding between the egg-shell proteins, was found to be produced at the follicle cell plasma membrane during the last stage of oogenesis. It is concluded that hydrogen peroxide is an endogenous, programmed product of the follicle cells, responsible for the action of peroxidase in order to oxidize the tyrosyl residues producing di-tyrosine and tri-tyrosine bonds between the chorion polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号