首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conversion of uridine diphosphate N-acetyl-D-glucosamine into uridine diphosphate N-acetyl-L-fucosamine was demonstrated with enzymes from cytoplasmic fraction of Salmonella arizonae O:59 cells in the presence of NAD+ (NADP+) and NADPH. The reaction product was identified by ion-pair, reverse-phase HPLC with the use of synthetic nucleoside diphosphate sugar standards under conditions specially developed for separation of uridine diphosphate 2-acetamido-2,6-dideoxyhexoses. L-Fucose dehydrogenase from porcine liver was shown to be applicable for determination of N-acetyl-L-fucosamine, this enzyme being used to confirm L-configuration of the amino sugar residue in the sugar nucleotide formed.  相似文献   

2.
Analogs of uridine diphosphate glucose (UDPGlc) with a modified hexosyl residue which contained a deoxy-unit at C-3 or C-4 were tested as substrates of calf liver UDPGlc dehydrogenase (EC 1.1.1.22). The 3-deoxyglucose derivative was found not to serve as a substrate for the enzyme whereas the 4-deoxyglucose analog was able to participate in the reaction. The apparent Km of the latter was 5.3 times that of UDPGlc and the relative V was 0.04. The reaction product was identified as uridine diphosphate deoxyhexuronic acid. UDP-deoxyhexoses were non-competitive inhibitors of UDPGlc enzymic oxidation, inhibition increased in the sequence: 2-deoxy-less than 3-and 6-deoxy-less than 4-deoxyglucose derivative. The significance of different HO-groups in hexosyl residue for interaction of UDPGlc with the enzyme is discussed.  相似文献   

3.
1. Under normal assay conditions the N-acetyl-D-glucosamine kinases from rat liver and kidney show a pH-dependent lag phase before reaching a steady state, which is probably due to reversible dissociation of the dimeric enzyme. 2. The enzyme catalyses the phosphorylation of N-acetyl-D-glucosamine, N-acetyl-D-mannosamine and D-glucose at pH 7.5, with apparent Km values of 0.06, 0.95 and 600 mM respectively for the enzyme from liver and 0.04, 1.0 and 410 mM respectively for the kidney enzyme. It is strongly inhibited by ADP. 3. The interaction between the enzymes and acceptor substrates shows non-Michaelian kinetics with respect to N-acetyl-D-glucosamine but normal behaviour towards N-acetyl-D-mannosamine and D-glucose. 4. Both N-acetyl-D-glucosamine and N-acetyl-D-mannosamine inhibit the phosphorylation of D-glucose; this inhibition appears to be mixed in character. 5. The facts that the enzymes catalyse the phosphorylation of N-acetyl-D-mannosamine and D-glucose do not detract from the designation of the enzymes as N-acetyl-D-glucosamine kinase. Phosphorylation of glucose in vivo by these kinases is unlikely.  相似文献   

4.
Treatment of uridine diphosphate glucose (UDPG) with an enzyme of S. fragilis was found to produce about 25% of a galactose-containing compound. This compound is precipitated with mercuric ions like UDPG, and its migration in chromatography in acid-ethanol is similar. By alkaline treatment it gives, like UDPG, a doubly esterified hexose monophosphate. It is concluded that the compound is uridine diphosphate galactose, and the bearing of this finding on the mechanism of action of UDPG is discussed.  相似文献   

5.
Uridine diphosphate D-glucose dehydrogenase of Aerobacter aerogenes   总被引:1,自引:0,他引:1  
Uridine diphosphate d-glucose dehydrogenase (EC 1.1.1.22) from Aerobacter aerogenes has been partially purified and its properties have been investigated. The molecular weight of the enzyme is between 70,000 and 100,000. Uridine diphosphate d-glucose is a substrate; the diphosphoglucose derivatives of adenosine, cytidine, guanosine, and thymidine are not substrates. Nicotinamide adenine dinucleotide (NAD), but not nicotinamide adenine dinucleotide phosphate, is active as hydrogen acceptor. The pH optimum is between 9.4 and 9.7; the K(m) is 0.6 mm for uridine diphosphate d-glucose and 0.06 mm for NAD. Inhibition of the enzyme by uridine diphosphate d-xylose is noncooperative and of mixed type; the K(i) is 0.08 mm. Thus, uridine diphosphate d-glucose dehydrogenase from A. aerogenes differs from the enzyme from mammalian liver, higher plants, and Cryptococcus laurentii, in which uridine diphosphate d-xylose functions as a cooperative, allosteric feedback inhibitor.  相似文献   

6.
The Methanococcus maripaludis MMP0352 protein belongs to an oxidoreductase family that has been proposed to catalyze the NAD+-dependent oxidation of the 3′′ position of uridine diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc), forming a 3-hexulose sugar nucleotide. The heterologously expressed MMP0352 protein was purified and shown to efficiently catalyze UDP-GlcNAc oxidation, forming one NADH equivalent. This enzyme was used to develop a fixed endpoint fluorometric method to analyze UDP-GlcNAc. The enzyme is highly specific for this acetamido sugar nucleotide, and the procedure had a detection limit of 0.2 μM UDP-GlcNAc in a 1-ml sample. Using the method of standard addition, UDP-GlcNAc concentrations were measured in deproteinized extracts of Escherichia coli, Saccharomyces cerevisiae, and HeLa carcinoma cells. Equivalent concentrations were determined by both enzymatic and chromatographic analyses, validating this method. This procedure can be adapted for the high-throughput analysis of changes in cellular UDP-GlcNAc concentrations in time series experiments or inhibitor screens.  相似文献   

7.
Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units.  相似文献   

8.
Novel compound 1, as the first example of cyclic ADP-ribose analogs containing a pyrimidine residue, was synthesized by a chemical strategy employing a Mitsunobu reaction for the condensation of the glucosyl moiety on protected uridine, and a Matsuda procedure for the cyclization step.  相似文献   

9.
In Salmonella typhimurium, three groups of genes located in rfb, rfe, and rff clusters are known to be involved in the biosynthesis of the enterobacterial common antigen. We found that enzymatic synthesis of uridine diphosphate N-acetylmannosaminouric acid, the activated form of a constituent sugar of the common antigen, followed the pathway previously described in Escherichia coli (N. Ichihara, N. Ishimoto, and E. Ito, FEBS Lett. 39:46--48, 1974). All of the six rff mutants tested, which fail to synthesize the common antigen, were deficient in one or both of the two enzymes needed for the synthesis of this sugar nucleotide from uridine diphosphate N-acetylglucosamine; these results established the physiological role of the pathway studied for the biosynthesis of N-acetylmannosaminuronic acid residues. The levels of these enzymes were not reduced in rfe mutants or rfb deletion mutants, although they produced no or only traces of the common antigen.  相似文献   

10.
A sulfated sugar nucleotide has been isolated from quail egg white, and accounts for nearly 80% of the total sugar nucleotides found in the egg white. Evidence is presented that this nucleotide is uridine diphosphate N-acetylgalactosamine 6-sulfate, an isomer of the 4-sulfated derivative of uridine diphosphate N-acetylgalactosamine previously found in chicken egg white. Further studies on the distribution of sulfated sugar nucleotides in egg white of various birds (chicken, quail, pheasant, peafowl, turkey, goose, and duck) demonstrate that each species has a characteristic composition, differing from one another regarding the relative amounts of 4-sulfated, 6-sulfated, and 4,6-bissulfated derivatives of uridine diphosphate N-acetylgalactosamine.  相似文献   

11.
The syntheses of a novel uridine diphosphate galactose (UDP-Gal) analog, (UDP-2,4,6-tri-O-acetyl-3-S-acetyl-3-thio-alpha-D-galactopyranose) (11) and the thiolpyridine protected (Uridine 5'-[3-S-(2-S-pyridyl)-3-thio-alpha-D-galactopyranosyl diphosphate) analog (12) are described. The reported synthesis relies on the novel use of thiolpyridine to generate 12 which is a suitably protected intermediate for generating a UDP-thioGal derivative by reduction prior to enzyme transfer via beta-1,4-galactosyltransferase.  相似文献   

12.
The interaction of alpha-D-glucopyranosyl pyrophosphates of 5-X-uridines (X = CH3, NH2, CH3O, I, Br, Cl, OH) with uridine diphosphate glucose (UDPGlc) dehydrogenase (EC 1.1.1.22) from calf liver has been studied. All the derivatives investigated were able to serve as substrates for the enzyme. The apparent Michaelis constants for UDPGlc-analogs were dependent both on electronic and steric factors. Increase of substituent negative inductive effect lead to decrease of pKa for ionization of the NH-group in the uracil nucleus and, consequently, to a diminishing of the proportion of the active analog species under the conditions of assay. After correction for the ionization effect, the Km values were found to depend on the van der Waals radius of the substituent. The value of 1.95 A seems to be critical, as the analogs with bulkier substituents at C-5 showed a decreased affinity to the enzyme. The maximal velocity values of the analogs were also dependent on nature of the substituent. Good linear correlation between log V and substituent hydrophobic phi-constant was observed for a number of the analogs, although V values for the nucleotides with X = H, OH or NH2 were higher than would be expected on the basis of the correlation. The significance of the results for understanding of the topography of UDPGlc dehydrogenase active site is discussed.  相似文献   

13.
Uridine 5'-(beta-L-rhamnopyranosyl diphosphate) was synthesized by the condensation of uridine 5'-diphenylpyrophosphate and beta-L-rhamnopyranosyl phosphate. That sugar 1-phosphate was made via the phosphitylation of the hemiacetal hydroxyl group of 2,3,4-tetra-O-acetyl-beta-L-rhamnopyranose. An enzyme preparation from the primary leaves of mung bean (Phaseolus aureus) was shown to catalyze the transfer of L-rhamnose from UDP-beta-L-rhamnose to the flavonol D-glucoside isoquercitrin to form rutin.  相似文献   

14.
1. Procedures for the extensive purification in high yield of N-acetyl-D-glucosamine kinase from rat liver and kidney are described. The separation of this enzyme from hepatic glucokinase depended primarily on their differing behaviour on an affinity column of Sepharose--N-(6-aminohexanoyl)-2-amino-2-deoxy-D-glucopyranose. 2. This N-acetyl-D-glucosamine kinase also catalyses the phosphorylation of N-acetyl-D-mannosamine and, at a lower rate, several other sugar analogues, including D-glucose. 3. A comparison of the behaviour of the enzyme during gel filtration and electrophoresis in sodium dodecyl sulphate/polyacrylamide gels suggests that N-acetyl-D-glucosamine kinase is a symmetrical dimer of mol.wt. 80000.  相似文献   

15.
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the first step in the biosynthesis of the hypermodified A37 residue in tRNAs that read codons beginning with uridine. The mechanism of the enzyme-catalyzed reaction was studied by isotope trapping, pre-steady-state rapid quench, and single turnover experiments. Isotope trapping indicated that the enzyme.tRNA complex is catalytically competent, whereas the enzyme.DMAPP complex is not. The results are consistent with an ordered sequential mechanism for substrate binding where tRNA binds first. The association and dissociation rate constants for the enzyme.tRNA binary complex are 1. 15+/-0.33x10(7) M(-1) s(-1) and 0.06+/-0.01 s(-1), respectively. Addition of DMAPP gives an enzyme.tRNA.DMAPP ternary complex in rapid equilibrium with the binary complex and DMAPP. Rapid quench studies yielded a linear profile (k(cat)=0.36+/-0.01 s(-1)) with no evidence for buildup of enzyme-bound product. Product release from DMAPP-tRNA transferase is therefore not rate-limiting. The Michaelis constant for tRNA and the equilibrium dissociation constant for DMAPP calculated from the individual rate constants determined here are consistent with values obtained from a steady-state kinetic analysis.  相似文献   

16.
We have isolated a portion of the uridine diphosphate N-acetyl-D-glucosamine:dolichol phosphate N-acetyl-glucosamine-1-phosphate transferase gene (GTR2) from the genome of a tunicamycin-resistant clonal Chinese hamster ovary cell line, 3E11. The genomic fragment was selected by its hybridization to the yeast ALG-7 gene at low stringency. A 2.46-kilobase cDNA was isolated from a library prepared from 3E11 mRNA and probed with GTR2. The cDNA contained an open reading frame that encodes a protein of 408 amino acids with a molecular mass of 44.9 kDa. This protein was 43% identical in amino acid sequence to the protein of 448 amino acids encoded by the ALG-7 gene. The GTR2 gene fragment contained sequences for four exons coding for the carboxyl-terminal half of the protein. Transferase DNA sequences in 3E11 cells were 12-fold elevated over wild-type cells and 25-fold elevated when 3E11 cells were grown in the presence of tunicamycin. Transferase RNA levels in 3E11 cells were also elevated over wild-type levels but appeared unchanged by the presence of tunicamycin in the medium.  相似文献   

17.
The enzyme, l-glutamine d-fructose 6-phosphate amidotransferase (EC 2.6.1.16) of Neurospora crassa, which catalyzes the formation of glucosamine 6-phosphate was shown to be subject to feedback inhibition by uridine diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc). The conclusion is based on the following observations. UDP-GlcNAc, the direct precursor of chitin, did not accumulate in the cell even when its utilization for the synthesis of cell wall chitin was interrupted by the antibiotic polyoxin D, a competitive inhibitor of the chitin synthetase (EC 2.4.1.16). Furthermore, the cellular level of UDP-GlcNAc rose in a short period of time when the amidotransferase was bypassed in vivo by the addition of glucosamine to the growing medium of the fungus. The amidotransferase was purified from N. crassa approximately 85-fold. Kinetic studies showed that UDP-GlcNAc was a potent and specific inhibitor of the amidotransferase, and that it did not alter the Michaelis constant for either l-glutamine or d-fructose 6-phosphate, suggesting that the inhibitor binds at a site on the enzyme distinct from the active site.  相似文献   

18.
Qing Dong 《Carbohydrate research》2010,345(11):1622-1626
Uridine diphosphate glucose (UDP-Glc) serves as a glucosyl donor in many enzymatic glycosylation processes. This paper describes a multiple enzyme, one-pot, biocatalytic system for the synthesis of UDP-Glc from low cost raw materials: maltodextrin and uridine triphosphate. Three enzymes needed for the synthesis of UDP-Glc (maltodextrin phosphorylase, glucose-1-phosphate thymidylytransferase, and pyrophosphatase) were expressed in Escherichia coli and then immobilized individually on amino-functionalized magnetic nanoparticles. The conditions for biocatalysis were optimized and the immobilized multiple-enzyme biocatalyst could be easily recovered and reused up to five times in repeated syntheses of UDP-Glc. After a simple purification, approximately 630 mg of crystallized UDP-Glc was obtained from 1 l of reaction mixture, for a moderate yield of around 50% (UTP conversion) at very low cost.  相似文献   

19.
G R Flentke  P A Frey 《Biochemistry》1990,29(9):2430-2436
UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UDB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a KD of 0.110 mM and kinact of 0.84 min-1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD+. The inactivation of epimerase by uridine 5'-diphosphate [2H2]chloroacetol proceeds with a primary kinetic isotope effect (kH/kD) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD+ at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD+ is proposed to be the chromophore with lambda max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.  相似文献   

20.
The synthesis of uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P) and glucose-6-phosphate (G6P) has been accomplished under simulated prebiotic conditions using urea and cyanamide, two condensing agents considered to have been present on the primitive Earth. The synthesis of UDPG was carried out by reacting G1P and UTP at 70 °C for 24 hours in the presence of the condensing agents in an aqueous medium. CDP-choline was obtained under the same conditions by reacting choline phosphate and CTP. G1P and G6P were synthesized from glucose and inorganic phosphate at 70 °C for 16 hours. Separation and identification of the reaction products have been performed by paper chromatography, thin layer chromatography, enzymatic analysis and ion pair reverse phase high performance liquid chromatography. These results suggest that metabolic intermediates could have been synthesized on the primitive Earth from simple precursors by means of prebiotic condensing agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号