首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biological function of a phosphoprotein with a molecular weight of 120 000 daltons localized in the nucleoli of mouse ascites sarcoma cells was studied by examining the effect of the phosphoprotein on RNA synthesis in the nucleoli in vitro. The phosphoprotein did not stimulate ribosomal RNA synthesis in vitro. During this study, it was observed that inorganic phosphate enhanced RNA synthesis in the nucleoli in vitro in the presence of either Mn2+ or Mn2+ plus Mg2+ as divalent cations. Inorganic phosphate stimulated the rate of the chain elongation reaction in RNA synthesis.  相似文献   

2.
DNA replication in isolated HeLa cell nuclei   总被引:5,自引:0,他引:5  
DNA replication was investigated in HeLa cell nuclei isolated from different phases of the cell cycle. DNA synthesis occurred only in S-phase nuclei and was dependent on the presence of the four deoxynucleoside triphosphates, Mg++, ATP and S-phase cytoplasm. G1-phase cytoplasm was unable to support such DNA synthesis. A purified preparation of calf thymus DNA polymerase, however, was able to replace S-phase cytoplasm in supporting ATP dependent DNA synthesis, which suggests that the S-phase cytoplasmic factor is a DNA polymerase. G1-phase nuclei could under no conditions be stimulated to initiate DNA replication prematurely.  相似文献   

3.
An Escherichia coli mutant capable of continued DNA synthesis in the presence of chloramphenicol has been isolated by an autoradiographic technique. The DNA synthesis represents semiconservative replication of E. coli DNA. It can occur in the presence of chloramphenicol or in the absence of essential amino acids, but not in the presence of an RNA synthesis inhibitor, rifampin. The mutant, termed constitutive stable DNA replication (Sdrc) mutant, appears to grow normally at 37 °C with a slightly slower growth rate than that of the parental strain. DNA replication in the mutant occurs at a reduced rate after 60 minutes in the absence of protein synthesis and continues linearly for several hours thereafter. This distinct slowdown in the DNA replication rate is due to a reduced rate of DNA synthesis in all the cells in the population. Constitutive stable DNA replication appears to require the dnaA and dnaC gene products. The sdrc mutation has been mapped near the pro-lac region of the E. coli chromosome. The mutation is recessive. Autoradiographic experiments have ruled out the possibility of multiple initiations during a cell cycle. The implication of the above findings is discussed in terms of the regulation of chromosome replication in E. coli.  相似文献   

4.
Onion (Allium cepa) and bean (Vicia faba) root tip cells containing many micronuclei, derived from x-ray-induced chromosome fragments, were exposed to H3-thymidine and H3-cytidine to determine the ability of such fragments to undergo DNA and RNA synthesis. Only a few micronuclei in onion and many in bean roots synthesize nucleic acid simultaneously with their main nuclei. A few micronuclei labeled with H3-thymidine undergo mitotic chromosome condensation along with the main nuclei, while the unlabeled ones never do so. The onset of nucleic acid synthesis as well as mitosis in micronuclei appears to be under generalized cellular control. Although all chromosomes and chromosome fragments at telophase give a positive reaction for a silver stainable nucleolar fraction, in the subsequent interphase only some micronuclei, derived from such chromosome fragments, are found to maintain nucleoli; others lose them with time. Those micronuclei which maintain nucleoli, perhaps due to the presence of specific chromosomal regions, are also active in DNA and RNA synthesis. These results are compatible with the concept that nucleoli and associated chromosome regions play an important role in the primary biosynthetic processes of the cell.  相似文献   

5.
Summary The effect of arabinosyl cytosine (ara-C) was studied on the uptake, phosphorylation and incorporation of 3H-thymidine in human tonsillar lymphocyte cultures is described along with its effect on the level of DNA polymerase and thymidine kinase activities induced by phytohaemagglutinin (PHA). Freshly isolated tonsillar lymphocytes are stimulated cells with a remarkably high activity of DNA polymerase a and thymidine kinase. During in vitro culture, these stimulated cells are transformed to the resting state with low DNA polymerase and thymidine kinase activity. However, a new DNA synthesising cycle can be induced by PHA with maximum at 48 h.10–6 M ara-C inhibited the incorporation of 3H-thymidine by 90–95%. This inhibition may be reversed by rinsing the cells. The inhibition of the transport of 3H-thymidine seems to be only a consequence of the inhibitory effect of ara-C on the DNA polymerisation reaction, because at 10 °C, where DNA synthesis was arrested, ara-C does not influence the uptake and the phosphorylation of 3H-thymidine.Ara-C (10–6 M) abolished also the PHA induced elevation of DNA polymerase a and thymidine kinase activities without influencing protein synthesis of the cell. This supports a coordinated regulation mechanism between DNA synthesis and the synthesis of enzymes involved in DNA replication.  相似文献   

6.
Polymerase δ is widely accepted as the lagging strand replicative DNA polymerase in eukaryotic cells. It forms a replication complex in the presence of replication factor C and proliferating cell nuclear antigen to perform efficient DNA synthesis in vivo. In this study, the human lagging strand holoenzyme was reconstituted in vitro. The rate of DNA synthesis of this holoenzyme, measured with a singly primed ssM13 DNA substrate, is 4.0 ± 0.4 nucleotides. Results from adenosine 5′-(3-thiotriphosphate) tetralithium salt (ATPγS) inhibition experiments revealed the nonprocessive characteristic of the human DNA polymerase (Pol δ) holoenzyme (150 bp for one binding event), consistent with data from chase experiments with catalytically inactive mutant Pol δAA. The ATPase activity of replication factor C was characterized and found to be stimulated ∼10-fold in the presence of both proliferating cell nuclear antigen and DNA, but the activity was not shut down by Pol δ in accord with rapid association/dissociation of the holoenzyme to/from DNA. It is noted that high concentrations of ATP inhibit the holoenzyme DNA synthesis activity, most likely due to its inhibition of the clamp loading process.  相似文献   

7.
Replication of polyoma DNA in nuclear extracts and nucleoprotein complexes.   总被引:2,自引:0,他引:2  
Viral nucleoprotein complexes containing radioactive form l DNA or replicative intermediates were extracted from nuclei isolated from polyoma-infected 3T6 fibroblasts, pulse labelled with [3H]thymidine. Such extracts incorporated labelled dGTP into viral DNA, similar to intact isolated nuclei, but at a decreased rate and for shorter periods. The two kinds of nucleoprotein complexes containing form l DNA or replicative intermediates were separated and purified. Each complex retained some capacity to incorporate labelled dGTP and this reaction was stimulated by ATP. The new DNA consisted mainly of short strands hydrogen-bonded to the template. With replicative intermediate complexes incorporation occurred at random into different parts of the viral DNA, while form l complexes incorporated dGTP preferentially into a region around the origin of replication. A crude preparation of T-antigen stimulated the incorporation. The amount of synthesis was low and it was not possible to decide with certainty whether some of the incorporation observed with form 1 complexes represented initiation of new rounds of replication or whether it represented elongation of early replicative intermediates.  相似文献   

8.
The rate of synthesis of cellular DNA is stimulated in stationary phase mouse embryo cells infected with polyoma virus. Nascent cellular DNA strands pulselabeled with [3H]thymidine in the presence of replicating viral DNA are smaller, by an average of 2·1 × 107 daltons, than DNA made under similar conditions in uninfected cells. Previous work (Cheevers et al., 1972) has indicated that this observation is the consequence of activation in infected cells of cellular DNA initiation sites not in operation during a similar pulse-labeling interval in uninfected cells. Similar results were obtained using cells infected with the temperature-sensitive Ts-a mutant of polyoma at 32 °C, which permits both the induction of cellular DNA synthesis and replication of viral DNA. However, at a temperature of 39 °C, which permits only the induction of cellular DNA replication in Ts-a-infected cells, the size of newly synthesized DNA is not different from that of uninfected cells. Similarly, in rat embryo cells abortively infected with polyoma (wild-type), stimulation of cellular DNA synthesis occurs but viral DNA replication is restricted, and no difference is apparent in the size of newly formed DNA as compared to uninfected cells. These results are interpreted to mean that in productively infected cells, polyoma DNA and some regions of the host genome may be co-ordinately replicated.  相似文献   

9.
Using a genetic approach, Chinese hamster ovary (CHO) cells sensitive (aphS) and resistant (aphR) to aphidicolin were grown in the presence or absence of various DNA polymerase inhibitors, and the newly synthesized DNA isolated from [32P]dNMP-labelled, detergent-permeabilized cells, was characterized after fractionation by gel electrophoresis. The particular aph Rmutant CHO cell line used was one selected for resistance to aphidicolin and found to possess an altered DNA polymerase of the a-family. The synthesis of a 24 kb replication intermediate was inhibited in wild-type CHO cells grown in the presence of aphidicolin, whereas the synthesis of this replication intermediate was not inhibited by this drug in the mutant CHO cells or in the aphidicolin-resistant somatic cell hybrid progeny constructed by fusion of wild-type and mutant cell lines. Arabinofuranosylcytosine (ara-C), like aphidicolin, inhibited the synthesis of this 24 kb DNA replication intermediate in the wild-type CHO cells but not in the aphR mutant cells. However, carbonyldiphosphonate (COMDP) inhibited the synthesis of the 24 kb replication intermediate in both wild-type and mutant cells. N2-(p-n-Butylphenyl)-2 deoxyguanisine-5-triphosphate (BuPdGTP) was found to inhibit the formation of Okazaki fragments equally well in the wild-type and mutant cell lines and thus led to inhibition of synthesis of DNA intermediates in both cases. It appears that aphidicolin and ara-C both affect a common target on the DNA polymerase, which is different from that affected by COMDP in vivo. These data also show that aphidicolin, ara-C and COMDP affect the elongation activity of DNA polymerase but not the initiation activity of the enzyme during DNA replication. This is the first report of such differentiation of the DNA polymerase activities during nuclear DNA replication in mammalian cells. The method of analysis described here for replication intermediates can be used to examine the inhibitory activities of other chemicals on DNA synthesis.  相似文献   

10.
DNA replication in isolated nuclei from Concanavalin A-stimulated and resting bovine lymphocytes has been studied. Nuclei from S phase lymphocytes incorporate 4–7 times more (3H)dTTP than nuclei from resting cells. The DNA synthesis was dependent on ATP, Mg2+ and all four deoxynucleoside triphosphates and was linear for about 60 min. The newly synthesized DNA is nuclear and DNase-sensitive and is the product of discontinuous and semiconservative replication. After limited digestion with micrococcal nuclease the in vitro replicated DNA was found to occur in nucleosomes prior to joining of primary DNA pieces. Addition of a protein extract from replicating cells stimulated the DNA synthesizing capacity of nuclei from resting lymphocytes. A preliminary characterization of this extract is given.  相似文献   

11.
The main strategy used by pro-and eukaryotic cells for replication of damaged DNA is translesion synthesis (TLS). Here, we investigate the TLS process catalyzed by DNA polymerases β and λ on DNA substrates using mono-or dinucleotide gaps opposite damage located in the template strand. An analog of a natural apurinic/apyrimidinic site, the 3-hydroxy-2-hydroxymetylthetrahydrofuran residue (THF), was used as damage. DNA was synthesized in the presence of either Mg2+ or Mn2+. DNA polymerases β and λ were able to catalyze DNA synthesis across THF only in the presence of Mn2+. Moreover, strand displacement synthesis was not observed. The primer was elongated by only one nucleotide. Another unusual aspect of the synthesis is that dTTP could not serve as a substrate in all cases. dATP was a preferential substrate for synthesis catalyzed by DNA polymerase β. As for DNA polymerase λ, dGMP was the only incorporated nucleotide out of four investigated. Modified on heterocyclic base photoreactive analogs of dCTP and dUTP showed substrate specificity for DNA polymerase β. In contrast, the dCTP analog modified on the exocyclic amino group was a substrate for DNA polymerase λ. We also observed that human replication protein A inhibited polymerase incorporation by both DNA polymerases β and λ on DNA templates containing damage.  相似文献   

12.
Cultures of human diploid fibroblasts (HDFs) exhibiting density dependent inhibition of replication (DDIR) resumed their progression through the cell cycle following medium replacement and, after a lag period of two hours, showed a dramatic increase in the incidence of isonucleolinar 4 cells and in the levels of uptake of 3H-uridine into the nucleoli. Between five and ten hours after refeeding these nucleolar changes were maximal, leveling off at the highest values, in periods corresponding to late G1 and early S. Concomitantly, a parallel increase in the number of nucleolini per cell occurred. As cells progressed through S and G2 phases the nucleolini decreased in number and reverted to the aniso-nucleolinar type. The intensity of nucleolar labeling by 3H-uridine and its correlate, the frequency of cells with labeled nucleoli, also decreased during these cell cycle stages. Both pre- and postreplicative periods of mitotic quiescence were characterized by high levels of anisonucleolinosis (60–80% of the cells) and by very low levels of nucleolar 3H-uridine incorporation. The magnitude of these nucleolar changes occurring during G1 stage was found to be strongly dependent on: (1) the length of time of contact between the cells and the fresh medium, at least eight hours of contact being necessary for a maximal response; (2) the amount of serum in the medium, the optimal serum concentration being between 10 and 50%, and (3) the pH of the medium. The nucleolar response was completely abolished at pH values below 7.0. These nucleolar changes were very sensitive to the presence of cycloheximide (10 μg/ml) and actinomycin D (0.003 μg/ml). The behavior of the nucleoli in response to these parameters was similar to the activation response of the cells to initiate DNA synthesis. During the time period of maximal nucleolar (activation) the onset of DNA synthesis as well as the morphological and autoradiographic manifestations of the nucleolar activation were completely inhibited by very low levels of actinomycin D (Ellem and Mironescu, '72), a selective inhibitor of nucleolar RNA synthesis (Perry, '65). This suggested a possible role of nucleolar metabolism, in normal diploid cells, in the initiation of DNA synthesis. Our results, however, seem to indicate that the nucleolar changes are necessary but not sufficient for the subsequent initiation of DNA synthesis, since with graded serum concentrations or medium volumes, smaller levels of a stimulus were needed to produce maximal isonucleolinosis than to effect a maximum replicative response in the cells.  相似文献   

13.
Quiescent confluent monolayers of WI38 human diploid fibroblasts were stimulated to proliferate by replacement of the exhausted medium with fresh medium containing 10% fetal calf serum. The cellular content of the polyamines, putrescine, spermidine, and spermine was studied at various intervals after the nutritional change. The putrescine content increased during the pre-replicative phase of the cell cycle, whereas the content of spermidine and spermine did not increase until after the initiation of DNA synthesis. By varying the composition of the stimulating medium it was possible to alter the percentage of cells that were stimulated to proliferate. Measurement of the cellular polyamine content and 3H-thymidine (3H-TdR) incorporation into DNA at the time of the maximal rate of DNA synthesis showed that the magnitude of putrescine accumulation depended on the percentage of cells that were stimulated to proliferate. These results indicate that there may be a connection between polyamine synthesis and subsequent DNA replication.  相似文献   

14.
The effect of bacteriophage SPO1 infection of Bacillus subtilis and a deoxyribonucleic acid (DNA) polymerase-deficient (pol) mutant of this microorganism on the synthesis of DNA has been examined. Soon after infection, the incorporation of deoxyribonucleoside triphosphates into acid-insoluble material by cell lysates was greatly reduced. This inhibition of host DNA synthesis was not a result of host chromosome degradation nor did it appear to be due to the induction of thymidine triphosphate nucleotidohydrolase. Examination of the host chromosome for genetic linkage throughout the lytic cycle indicated that no extensive degradation occurred. After the inhibition of host DNA synthesis, a new polymerase activity arose which directed the synthesis of phage DNA. This new activity required deoxyribonucleoside triphosphates as substrates, Mg2+ ions, and a sulfhydryl reducing agent, and it was stimulated in the presence of adenosine triphosphate. The phage DNA polymerase, like that of its host, was associated with a fast-sedimenting cell membrane complex. The pol mutation had no effect on the synthesis of phage DNA or production of mature phage particles.  相似文献   

15.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

16.
EGF-stimulated replication of specific genes was examined in primary hepatocyte cultures from mature (6 months) and senescent (24 months) rats. Basal and EGF-stimulated [3H]thymidine incorporation and DNA polymerase α activities, as well as total cellular DNA, were also assessed. The genes examined were dihydrofolate reductase (DHFR) and c-myc, as well as total mitochondrial DNA (mt DNA). Although [3H]thymidine incorporation, DNA polymerase α activity, total cellular DNA, DHFR, and c-myc gene specific DNA replication stimulated by EGF are reduced with age, mt DNA replication is not affected by either EGF or age. Chromosomal DNA replication is mediated mainly by DNA polymerase α while mt DNA replication is mediated by its own DNA polymerase γ. Thus, the age-related decline in stimulated DNA replication appears to be associated mainly with the DNA polymerase α activation pathway. J. Cell. Physiol. 176:32–39, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    17.
    Extracellular ATP dose dependently stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in osteoblast-like MC3T3-E1 cells. ATP stimulated arachidonic acid release and the synthesis of prostaglandin E2 (PGE2). However, the ATP-induced arachidonic acid release was significantly reduced by chelating extracellular Ca2+ with EGTA. On the other hand, ATP induced DNA synthesis of these cells in a dose-dependent manner in the range between 1μM and 1 mM. The pretreatment with indomethacin, a cyclooxygenase inhibitor, suppressed both ATP-induced PGE2 synthesis and DNA synthesis in these cells. The inhibitory effect by 50μM indomethacin on the DNA synthesis was reversed by adding 10μM PGE2. These results strongly suggest that extracellular ATP stimulates Ca2+ influx resulting in the release of arachidonic acid in osteoblast-like cells and that extracellular ATP-induced proliferative effect is mediated, at least in part, by ATP-stimulated PGE2 synthesis.  相似文献   

    18.
    Incorporation of externally supplied and injected 3H-thymidine into DNA was measured autoradiographically. Starved stentors synthesized no DNA, in contrast to well-fed animals, but replication commenced in some cases if they were fed. Grafting starved and well-fed stentors together rapidly induced DNA synthesis in the starved partner. Suppression of synthesis in the well-fed macronucleus was not observed. Well-fed cytoplasm alone induced DNA synthesis in starved stentors, and starved cytoplasm grafted to starved animals also induced synthesis after a lag. Starved animals with the beaded macronucleus reduced to 2 nodes commenced DNA replication after 6 hr; however, initiation was prevented if the normal nuclear complement was restored before the fourth hour.The macronucleus was required to render starved cytoplasm capable of supporting DNA synthesis, but once potentiated the cytoplasm alone could initiate replication in a starved nucleus. Initiation required RNA synthesis, shown by actinomycin sensitivity.This nucleic acid analysis suggests that decreasing the nucleocytoplasmic ratio elicits RNA synthesis in the remaining macronucleus. The RNA codes for proteins involved in DNA synthesis which are synthesized in the cytoplasm and enter the nucleus to initiate DNA replication.  相似文献   

    19.
    DNA biosynthesis by a system containing giant nuclei isolated from rat trophoblast cells at Day 13 of pregnancy has been studied. A method for the isolation of giant nuclei in good yield has been described. These nuclei were capable of incorporating [3H]dTTP into DNA for 2 hr and the incorporation was proportional to the amount of DNA template (nuclei). The system was highly dependent on the four deoxyribonucleoside triphosphates, ATP, and Mg2+ and was stimulated by monovalent ions such as K+. The optimum pH was 8.6. The product of the reaction was insensitive to RNase, sensitive to DNase, and banded at 1.710 g/ml in neutral CsCl together with bulk rat trophoblast DNA. Pulse-chase and density labeling experiments utilizing bromodeoxyuridine have indicated that replicative, discontinuous synthesis was taking place at sites previously active in vivo. DNA polymerases α, β, and γ were shown to be present in the nuclei. Experiments utilizing selective inhibitors of polymerases have demonstrated that DNA replication by trophoblast nuclei in vitro was insensitive to the specific α-polymerase inhibitor, aphidicolin, but almost completely inhibited by 2′, 3′-dideoxythymidine 5′-triphosphate as well as by N-ethylmaleimide suggesting that DNA replication observed in these trophoblast nuclei in vitro may be carried out by DNA polymerase γ.  相似文献   

    20.
    DNA replication in Bacillus subtilis1,2 and other Gram-positive organisms3 is specifically inhibited by 6-(p-hydroxyphenyl)-azouracil (HPUra). The site of action of this compound has not so far been identified, but important progress was made by Brown et al.4, who studied the effect of HPUra on DNA synthesis in B. subtilis cells made permeable to externally supplied deoxynucleoside triphosphates by treatment with toluene. In this in vitro system, HPUra had no inhibitory effect when added alone, but in the presence of NADPH or dithiothreitol (DTT) the drug was reduced to a colourless form which specifically inhibited DNA synthesis.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号