首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The coordinated orientation of ciliary beat in the larval epidermis of amphibians, evident in an organized streamline pattern, suggests a planar polarity of the epithelium, i.e., a polarity within the plane of the cell sheet. It has been proposed that the direction of ciliary beat is determined at mid gastrula by a gradient of a diffusible factor produced by the mesoderm. To analyze whether ectoderm in isolation can establish a uniform direction of ciliary beat, and at what stage its polarity is specified in the embryo, ectoderm of Xenopus laevis embryos of different stages was cultured in vitro on substrates. On concanavalin A, ectoderm isolated at early gastrula stages, i.e., prior to any contact with mesoderm, can autonomously coordinate the direction of ciliary beat, at least in small regions. A uniform planar polarity is expressed by ectoderm explanted from the early mid gastrula onward. On fibronectin, which promotes migration, the direction of movement correlates well with the direction of ciliary beat, and directional migration can even override the inherent polarity specified prior to explantation. Embryos which lack dorsal mesoderm nevertheless develop a highly organized streamline pattern, excluding a strict requirement for dorsal mesoderm for the determination of planar polarity. However, in spite of the early specification of planar polarity found for isolated tissue, rotated ectodermal transplants in situ can readjust their polarity in accordance with that of the host.  相似文献   

3.
Xlens1 is a novel Xenopus member of the fork head gene family, named for its nearly restricted expression in the anterior ectodermal placode, presumptive lens ectoderm (PLE), and anterior epithelium of the differentiated lens. The temporal and spatial restriction of its expression suggests that: (1) Xlens1 is transcribed initially at neural plate stages in response to putative signals from the anterior neural plate that transform lens-competent ectoderm to lens-biased ectoderm; (2) further steps in the process of lens-forming bias restrict Xlens1 expression to the presumptive lens ectoderm (PLE) during later neural plate stages; (3) interactions with the optic vesicle maintain Xlens1 expression in the lens placode; and (4) Xlens1 expression is downregulated as committed lens cells undergo terminal differentiation. Induction assays demonstrate that pax6 induces Xlens1 expression, but unlike pax6, Xlens1 cannot induce the expression of the lens differentiation marker beta-crystallin. In the whole embryo, overexpression of Xlens1 in the lens ectoderm causes it to thicken and maintain gene expression characteristics of the PLE. Also, this overexpression suppresses differentiation in the lens ectoderm, suggesting that Xlens1 functions to maintain specified lens ectoderm in an undifferentiated state. Misexpression of Xlens1 in other regions causes hypertrophy of restricted tissues but only occasionally leads ectopic sites of gamma-crystallin protein expression in select anterior head regions. These results indicate that Xlens1 expression alone does not specify lens ectoderm. Lens specification and differentiation likely depends on a combination of other gene products and an appropriate level of Xlens1 activity.  相似文献   

4.
Lens antigens, detected by immunofluorescence using rabbit antiserum against adult chick lens, appear in the chick embryo at stage 16. When eye rudiments are cultured in vitro, antigens developed; but they did not when optic cups were cultured but for a few cases. Isolated presumptive lens ectoderm from stage 4 did not develop antigens when cultured, but such ectoderm from stages 7--9 developed lens antigens and also showed lens structures. Stage 4 ectoderm could be induced to lens antigen development by alcohol-killed cups from stages 9--13. The experimental system can be used for in vitro studies on lens induction.  相似文献   

5.
The ability of a tissue to respond to induction, termed its competence, is often critical in determining both the timing of inductive interactions and the extent of induced tissue. We have examined the lens-forming competence of Xenopus embryonic ectoderm by transplanting it into the presumptive lens region of open neural plate stage embryos. We find that early gastrula ectoderm has little lens-forming competence, but instead forms neural tissue, despite its location outside the neural plate; we believe that the transplants are being neuralized by a signal originating in the host neural plate. This neural competence is not localized to a particular region within the ectoderm since both dorsal and ventral portions of early gastrula ectoderm show the same response. As ectoderm is taken from gastrulae of increasing age, its neural competence is gradually lost, while lens competence appears and then rapidly disappears during later gastrula stages. To determine whether these developmental changes in competence result from tissue interactions during gastrulation, or are due to autonomous changes within the ectoderm itself, ectoderm was removed from early gastrulae and cultured for various periods of time before transplantation. The loss of neural competence, and the gain and loss of lens competence, all occur in ectoderm cultured in vitro with approximately the same time course as seen in ectoderm in vitro. Thus, at least from the beginning of gastrulation onwards, changes in competence occur autonomously within ectoderm. We propose that there is a developmental timing mechanism in embryonic ectoderm that specifies a sequence of competences solely on the basis of the age of the ectoderm.  相似文献   

6.
Nodal is a key player in the process regulating oral–aboral axis formation in the sea urchin embryo. Expressed early within an oral organizing centre, it is required to specify both the oral and aboral ectoderm territories by driving an oral–aboral gene regulatory network. A model for oral–aboral axis specification has been proposed relying on the self activation of Nodal and the diffusion of the long-range antagonist Lefty resulting in a sharp restriction of Nodal activity within the oral field. Here, we describe the expression pattern of lefty and analyse its function in the process of secondary axis formation. lefty expression starts at the 128-cell stage immediately after that of nodal, is rapidly restricted to the presumptive oral ectoderm then shifted toward the right side after gastrulation. Consistently with previous work, neither the oral nor the aboral ectoderm are specified in embryos in which Lefty is overexpressed. Conversely, when Lefty's function is blocked, most of the ectoderm is converted into oral ectoderm through ectopic expression of nodal. Reintroducing lefty mRNA in a restricted territory of Lefty depleted embryos caused a dose-dependent effect on nodal expression. Remarkably, injection of lefty mRNA into one blastomere at the 8-cell stage in Lefty depleted embryos blocked nodal expression in the whole ectoderm consistent with the highly diffusible character of Lefty in other models. Taken together, these results demonstrate that Lefty is essential for oral–aboral axis formation and suggest that Lefty acts as a long-range inhibitor of Nodal signalling in the sea urchin embryo.  相似文献   

7.
8.
The generation of reporter lines for observing lens differentiation in vivo demonstrates a new strategy for embryological manipulation and allows us to address a long-standing question concerning the timing of the onset of differentiation. Xenopus tropicalis was used to make GFP reporter lines with (gamma)1-crystallin promoter elements directing GFP expression within the early lens. X. tropicalis is a close relative of X. laevis that shares the same ease of tissue manipulation with the added benefits of a diploid genome and faster life cycle. The efficiency of the Xenopus transgenic technique was improved in order to generate greater numbers of normal, adult transgenic animals and to facilitate in vivo analysis of the crystallin promoter. This transgene is transmitted through the germline, providing an accurate and consistent way to monitor lens differentiation. This line permitted us to distinguish models for how the onset of differentiation is controlled: by a process intrinsic to differentiating tissue or one dependent on external cues. This experiment would not have been feasible without the sensitivity and accuracy provided by the in vivo reporter. We find that, in specified lens ectoderm transplanted from neural tube stage donors to younger neural-plate-stage hosts, the onset of differentiation, as measured by expression of the crystallin/GFP transgene, is delayed by an average of 4.4 hours. When specified lens ectoderm is explanted into culture, the delay was an average of 16.3 hours relative to control embryos. These data suggest that the onset of differentiation in specified ectoderm can be altered by the environment and imply that this onset is normally controlled by external cues rather than by an intrinsic mechanism.  相似文献   

9.
10.
Summary Lens induction is a classic example of the tissue interactions that lead to cell specialization during early vertebrate development. Previous studies have shown that a large region of head ectoderm, but not trunk ectoderm, of 36 h (stage 10) chicken embryos retains the potential to form lenses and synthesize the protein δ-crystallin under some conditions. We have used polyacrylamide gel electrophoresis and fluorography to examine protein and glycoprotein synthesis in presumptive lens ectoderm and presumptive dorsal (trunk) epidermis to look for differentiation markers for these two regions prior to the appearance of δ-crystallin at 50 h. Although nearly all of the proteins incorporating3H-leucine were shared by presumptive lens ectoderm and trunk ectoderm, these two regions showed more dramatic differences in the incorporation of3H-sugars into glycoproteins. when non-lens head ectoderm that has a capacity for lens formation in vitro was labeled, a hybrid pattern of glycoprotein synthesis was discovered: glycoproteins found in either presumptive lens ectoderm or trunk ectoderm were oftentimes also found in other head ectoderm. Therefore, molecular markers have been identified for three regions of ectoderm committed to different fates (lens and skin), well before features of terminal differentiation begin to appear in the lens.  相似文献   

11.
12.
Liu W  Lagutin OV  Mende M  Streit A  Oliver G 《The EMBO journal》2006,25(22):5383-5395
The homeobox gene Six3 regulates forebrain development. Here we show that Six3 is also crucial for lens formation. Conditional deletion of mouse Six3 in the presumptive lens ectoderm (PLE) disrupted lens formation. In the most severe cases, lens induction and specification were defective, and the lens placode and lens were absent. In Six3-mutant embryos, Pax6 was downregulated, and Sox2 was absent in the lens preplacodal ectoderm. Using ChIP, electrophoretic mobility shift assay, and luciferase reporter assays, we determined that Six3 activates Pax6 and Sox2 expression. Misexpression of mouse Six3 into chick embryos promoted the ectopic expansion of the ectodermal Pax6 expression domain. Our results position Six3 at the top of the regulatory pathway leading to lens formation. We conclude that Six3 directly activates Pax6 and probably also Sox2 in the PLE and regulates cell autonomously the earliest stages of mammalian lens induction.  相似文献   

13.
T M Rahmani 《Acta anatomica》1984,119(4):203-209
The ability of stage-4-9 chick presumptive lens ectoderm to undergo nervous tissue or lens differentiation was studied in vitro. The tissue was cultured alone or co-cultured with alcohol-killed primitive node or optic cup as inducer. Immunofluorescence was studied on paraffin-wax preparations, which were then studied histologically. An attempt was made to correlate immunological and histological differentiation. The presumptive lens ectoderm differentiated both nervous tissue and lens structures in all stages, regardless of the presence or absence of an inducer. The outcome, however, was improved when an inducer was included. The inducers were not qualitatively specific. The stage-4 ectoderm proved to be more apt than older stages to differentiate nervous tissue and form neural tube-like structures. In the former stage, lens differentiation occurred with less readiness. Older stages differentiated lens structures readily and also showed immunological signs of nervous tissue differentiation. No indication of histological differentiation, however, was apparent and no neural tube-like structures formed.  相似文献   

14.
Cranial placodes are local thickenings of the vertebrate head ectoderm that contribute to the paired sense organs (olfactory epithelium, lens, inner ear, lateral line), cranial ganglia and the adenohypophysis. Here we use tissue grafting and dye injections to generated fate maps of the dorsal cranial part of the non-neural ectoderm for Xenopus embryos between neural plate and early tailbud stages. We show that all placodes arise from a crescent-shaped area located around the anterior neural plate, the pre-placodal ectoderm. In agreement with proposed roles of Six1 and Pax genes in the specification of a panplacodal primordium and different placodal areas, respectively, we show that Six1 is expressed uniformly throughout most of the pre-placodal ectoderm, while Pax6, Pax3, Pax8 and Pax2 each are confined to specific subregions encompassing the precursors of different subsets of placodes. However, the precursors of the vagal epibranchial and posterior lateral line placodes, which arise from the posteriormost pre-placodal ectoderm, upregulate Six1 and Pax8/Pax2 only at tailbud stages. Whereas our fate map suggests that regions of origin for different placodes overlap extensively with each other and with other ectodermal fates at neural plate stages, analysis of co-labeled placodes reveals that the actual degree of overlap is much smaller. Time lapse imaging of the pre-placodal ectoderm at single cell resolution demonstrates that no directed, large-scale cell rearrangements occur, when the pre-placodal region segregates into distinct placodes at subsequent stages. Our results indicate that individuation of placodes from the pre-placodal ectoderm does not involve large-scale cell sorting in Xenopus.  相似文献   

15.
16.
Upon morphogenesis, the simple neuroepithelium of the optic vesicle gives rise to four basic tissues in the vertebrate optic cup: pigmented epithelium, sensory neural retina, secretory ciliary body and muscular iris. Pigmented epithelium and neural retina are established through interactions with specific environments and signals: periocular mesenchyme/BMP specifies pigmented epithelium and surface ectoderm/FGF specifies neural retina. The anterior portions (iris and ciliary body) are specified through interactions with lens although the molecular mechanisms of induction have not been deciphered. As lens is a source of FGF, we examined whether this factor was involved in inducing ciliary body. We forced the pigmented epithelium of the embryonic chick eye to express FGF4. Infected cells and their immediate neighbors were transformed into neural retina. At a distance from the FGF signal, the tissue transitioned back into pigmented epithelium. Ciliary body tissue was found in the transitioning zone. The ectopic ciliary body was never in contact with the lens tissue. In order to assess the contribution of the lens on the specification of normal ciliary body, we created optic cups in which the lens had been removed while still pre-lens ectoderm. Ciliary body tissue was identified in the anterior portion of lens-less optic cups. We propose that the ciliary body may be specified at optic vesicle stages, at the same developmental stage when the neural retina and pigmented epithelium are specified and we present a model as to how this could be accomplished through overlapping BMP and FGF signals.  相似文献   

17.
Among angiosperms there is a high degree of variation in embryo/endosperm size in mature seeds. However, little is known about the molecular mechanism underlying size control between these neighboring tissues. Here we report the rice GIANT EMBRYO (GE) gene that is essential for controlling the size balance. The function of GE in each tissue is distinct, controlling cell size in the embryo and cell death in the endosperm. GE, which encodes CYP78A13, is predominantly expressed in the interfacing tissues of the both embryo and endosperm. GE expression is under negative feedback regulation; endogenous GE expression is upregulated in ge mutants. In contrast to the loss‐of‐function mutant with large embryo and small endosperm, GE overexpression causes a small embryo and enlarged endosperm. A complementation analysis coupled with heterofertilization showed that complementation of ge mutation in either embryo or endosperm failed to restore the wild‐type embryo/endosperm ratio. Thus, embryo and endosperm interact in determining embryo/endosperm size balance. Among genes associated with embryo/endosperm size, REDUCED EMBRYO genes, whose loss‐of‐function causes a phenotype opposite to ge, are revealed to regulate endosperm size upstream of GE. To fully understand the embryo–endosperm size control, the genetic network of the related genes should be elucidated.  相似文献   

18.
This investigation was performed in order to analyze the basic relationships between the archenteron roof and the overlying ectoderm in primary induction in the Cynopus (Triturus) pyrrhogaster embryo.
The part of the archenteron roof that is active in inducing capacity extends linearly after invagination at the speed of 0.15 mm per hr at 23°C until stage 13b. The period of contact at each position of the presumptive neuro-ectoderm with the active archenteron roof could be estimated by the formula described in the Discussion.
Pieces of the presumptive neuro-ectoderm were isolated from gastrulae at three developmental stages and cultured separately in Holtfreter solution after being divided caudo-cranially into 4 parts. The result showed that some of them were able to differentiate into neural tissues even in the mid-gastrula stage and that the presumptive neuro-ectoderm acquired the capacity to differentiate into neural tissue along a caudocranial axis from the part adjacent to the blastopore during gastrulation.
It could be estimated that 3 hr of contact with the active archenteron roof is sufficient for the presumptive neuro-ectoderm to differentiate into neural tissue.
The present study also showed that the neuralizing capacity of the whole prospective neuro-ectodermal area has already been determined before the end of stage 13, i.e., within less than 14 hr after first contact of the ectoderm with the active archenteron roof at 23°C.  相似文献   

19.
In amphibian development, neural structures arise from the presumptive ectoderm at the gastrula stage by an inductive interaction with the chordamesoderm. It has been previously reported that early gastrula presumptive ectoderm can be neuralized when it is dissociated into single cells. A similar result is reported here with regard to Pleurodeles waltl presumptive ectoderm. Using this experimental model system we demonstrate: first, that neuronal and glial lineages can be specified from the presumptive ectoderm without any intervention of the natural inducing tissue; and second, that whereas rupture of cell-cell contacts evoked neural induction, dissociation immediately followed by reaggregation reduces the neuralizing response, pointing toward an active role played by cell-cell contacts of presumptive ectodermal cells in the modulation of neural commitment.  相似文献   

20.
Induction of a lens by the optic vesicle of the brain was the first demonstration of how tissue interactions could influence cell fate during development. However, recent work with amphibians has shown that the optic vesicle is not the primary inducer of lens formation. Rather, an earlier interaction between anterior neural plate and presumptive lens ectoderm appears to direct lens formation. One problem with many early experiments was the absence of an unambiguous assay for lens formation. Before being able to test whether the revised model of lens induction applies to chicken embryos, we examined the suitability of using delta-crystallin as a marker of lens formation. Although delta-crystallin is the major protein synthesized in the chick lens, one or both of the two delta-crystallin genes found in chickens is transcribed in many non-lens tissues as well. In studies of lens formation where appearance of the delta-crystallin protein is used as a positive assay, synthesis of delta-crystallin outside of the lens could make experiments difficult to interpret. Therefore, polyacrylamide gel electrophoresis, immunoblotting, and immunofluorescence were used to determine whether the delta-crystallin messenger RNA detected in non-lens tissues is translated into protein, as it is in the lens. On Coomassie-blue-stained gels of several tissues from stage-22 embryos, a prominent protein was observed that co-migrated with delta-crystallin. However, on immunoblots, none of the non-lens tissues tested contained detectable levels of delta-crystallin at this stage. By imunofluorescence, delta-crystallin was observed in Rathke's pouch and in a large area of oral ectoderm near Rathke's pouch, yet none of the cells in these non-lens tissues showed the typical elongated morphology of lens fiber cells. When presumptive lens ectoderm or other regions of ectoderm from stage-10 embryos were cultured and tested for lens differentiation, both cell elongation and delta-crystallin synthesis were observed, or neither were observed. The results suggest that delta-crystallin synthesis and cell elongation together serve as useful criteria for assessing a positive lens response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号