首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mutant of Escherichia coli lacking pyridine nucleotide transhydrogenase (EC 1.6.1.1) was isolated by assaying activity in clones of cells mutagenized with N-methyl-N′-nitro-N-nitrosoguanidine. The mutant is missing both energy-independent and energy-dependent transhydrogenase, but has normal NADH dehydrogenase and ATPase activities. Compared to the parental strain, the mutant has normal growth rates with glucose, glycerol, or succinate aerobically and with glucose or glycerol plus fumarate anaerobically. The aerobic growth yield with limiting glucose concentrations is also normal. These growth properties indicate that the enzyme is not an essential source of NADPH or ATP in vivo.  相似文献   

2.
ATP and respiration (NADH)-driven NAD(P)+ transhydrogenase (EC 1.6.1.1) activities are low in membranes from Escherichia coli cultured on yeast extract medium (17 and 21 nmol/min × mg) but high on glucose (82 and 142 nmol/min × mg). The ATPase and respiratory activities in both cases appeared comparable. Growth of the bacteria in yeast extract medium followed by washing and replacement into a glucose medium showed that after 3 h the energy-linked and energy-independent NAD(P)+ transhydrogenase (reduction of acetylpyridine NAD+ by NADPH) activities had appeared simultaneously. Incorporation of chloramphenicol or omission of glucose in the induction medium resulted in no increase in these activities indicating that de novo protein synthesis is required for the induction of energy-linked and -independent NAD(P)+ transhydrogenase. It was found that the Km values for acetylpyridine NAD+ and NADPH for the energy-independent reaction in membranes from glucose grown cells (143 and 62 μm) were similar to those in membranes from cells grown on glucose-yeast extract (135 and 45 μm), respectively, but the maximum velocity at infinite acetyl pyridine NAD+ and NADPH increased from 353 to 2175 nmol/min × mg. Furthermore, the membrane-bound NAD(P)+ transhydrogenase in glucose-yeast extract grown cells showed substrate inhibition at high NADPH and low acetyl pyridine NAD+ levels. Further kinetic data demonstrate that the mechanism of the energy-independent NAD(P)+ transhydrogenase in E. coli is similar to that of the mitochondrial enzyme and exhibits similar responses to competitive inhibitors at the NAD+ and NADPH sites.  相似文献   

3.
The effects of hypophysectomy and subsequent administration of bovine growth hormone (0.1 IU/100 g body wt) and l-thyroxine (5 μg/100 g body wt) on respiration, energization-dependent fluorescence of 1-anilino-8-naphthalene sulfonate, NADH dehydrogenase, energy-independent nicotinamide nucleotide transhydrogenase, and succinate dehydrogenase activities were investigated in submitochondrial particles of rat liver. Hormones were injected daily for 7 days. Hypophysectomy decreased the respiratory rate with NADH or succinate and the activities of the three enzymes. Administration of growth hormone increased the respiration but showed selectivity toward NADH. Thyroxine increased the respiration more than growth hormone did with both substrates. Growth hormone increased the activities of NADH dehydrogenase and transhydrogenase whereas thyroxine increased the activity of only succinate dehydrogenase. After growth hormone treatment transhydrogenase activity was increased to about three times that of controls which may have significance in some processes mediated either directly or permissively by growth hormone. When both hormones were injected together, there was a significant decrease in the thyroxine-dependent rise in respiration on succinate as well as the growth hormone-dependent rise in enzyme activities. Fluorescence yield of 1-anilino-8-naphthalene sulfonate in unenergized submitochondrial particles remained unchanged independent of the hormonal status. Energization with succinate or NADH increased the fluorescence yield by about 2–20 times. Several parameters of energizationdependent fluorescence were decreased after hypophysectomy. In restoring these parameters, growth hormone and thyroxine showed specificity toward the energization substrate NADH and succinate, respectively. From the present results we conclude that (a) growth hormone and thyroxine regulate mitochondrial activity by affecting different segments of the respiratory chain, namely Complex I and Complex II, respectively, and (b) growth hormone and thyroxine exert moderating effects on one another.  相似文献   

4.
Midgut and fatbody mitochondria from fifth larval instar Manduca sexta display a membrane-associated transhydrogenase that catalyzes a reversible hydride ion transfer between NADP(H) and NAD(H). The NADPH-forming activity occurs as a nonenergy- or energy-linked activity with energy for the latter derived from either electron transport-dependent NADH or succinate utilization, or ATP hydrolysis by Mg++-dependent ATPase. During the ten-day developmental period preceding the larval-pupal molt (fifth larval instar), significant peaks in the mitochondrial transhydrogenase activities of midgut and fatbody tissues were noted and these peaks were coincident with the onset of wandering behavior and with the fifty-fold increase in ecdysone 20-monooxygenase (E20-M) activity previously reported for M. sexta midgut. Since E20-M preferentially uses NADPH in catalyzing ecdysone conversion to the physiologically active molting hormone, 20-hydroxyecdysone, the physiological and developmental significance of the mitochondrial, NADPH-forming energy-linked transhydrogenations were made apparent. Moreover, that the increases in all transhydrogenase activities resulted from de novo enzyme synthesis were indicated by the cycloheximide-dependent reductions in these activities.  相似文献   

5.
Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31 mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33 mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5 mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield.  相似文献   

6.
The interaction between pure transhydrogenase and ATPase (Complex V) from beef heart mitochondria was investigated with transhydrogenase-ATPase vesicles in which the two proteins were co-reconstituted by dialysis or dilution procedures. In addition to phosphatidylcholine and phosphatidylethanolamine, reconstitution required phosphatidylserine and lysophosphatidylcholine. Transhydrogenase-ATPase vesicles catalyzed a 20-30-fold stimulation of the reduction of NADP+ or thio-NADP+ by NADH and a 70-fold shift of the apparent equilibrium expressed as the nicotinamide nucleotide ratio [NADPH][NAD+]/[NADP+][NADH]. In both of these respects, the transhydrogenase-ATPase vesicles were severalfold more efficient than beef heart submitochondrial particles. By measuring the ATP-driven transhydrogenase and the oligomycin-sensitive ATPase activities simultaneously and under the same conditions at low ATP concentrations, i.e. below 15 microM, the ATP-driven transhydrogenase/oligomycin-sensitive ATPase activity ratio was found to be about 3. This value is consistent with the stoichiometries of three protons translocated per ATP hydrolyzed and one proton translocated per NADPH formed and with a mechanism where the two enzymes interact through a delocalized proton-motive force.  相似文献   

7.
In contrast with wild-type Salmonella typhimurium LT2, strain HfrA did not have ATP-driven energy-dependent transhydrogenase activity, although ATP-dependent quenching of atebrin fluorescence was normal. Respiration-dependent and energy-independent transhydrogenase, and Ca2+-activated ATPase (adenosine triphosphatase) activities were similar in both strains. Purified ATPases from the two strains had similar specific activities, similar subunit polypeptides, and were equally effective in restoring energy-dependent transhydrogenase activities to membrane particles of strain LT2 from which the ATPase had been stripped. The purified ATPases from both strains could restore respiration-dependent but not ATP-dependent transhydrogenation to stripped particles of strain HfrA. Both strains grew aerobically equally well on salts media containing glucose, malate, succinate, citrate, acetate, pyruvate, fumarate, lactate or aspartate as substrates. Growth on glucose under anaerobic conditions was similar. Strains LT2 and HfrA were equally effective in the accumulation under both aerobic and anaerobic conditions of the amino acids proline, phenylalanine, histidine, lysine, isoleucine and aspartic acid. Inhibition of amino acid accumulation by KCN and dicyclohexylcarbodi-imide occurred to the same extent in both strains. The complete inhibition by dicyclohexylcarbodi-imide of amino acid uptake under anaerobic conditions suggested that ATP could drive amino acid uptake in both strains. The ability of strain HfrA to carry out ATP-dependent transport or quenching of atebrin fluorescence but not ATP-dependent transhydrogenation is different from the wild-type strain and from any previously described energy-coupling mutant. It is difficult to reconcile the properties of this mutant with the chemiosmotic hypothesis.  相似文献   

8.
Processes in submitochondrial vesicles obtained from the liver mitochondria of hypothyroid rats were compared at 25–30° with those from normal rats. Hypothyroidism did not alter the rates of oxidation of succinate or β-hydroxybutyrate, or energy-independent transhydrogenation of pyridine nucleotides. Energy-dependent transhydrogenation supported either by added ATP or by succinate oxidation was doubled in the vesicles of hypothyroid rats, whereas ATP-supported reversed electron-flow was unchanged. Hormone injection corrected the abnormal rate. Since submitochondrial vesicles phosphorylate ADP slowly at 30° in hypothyroidism (5), these data suggest that the thyroid state controls the use rather than the supply of available energy potential.  相似文献   

9.
The relationship between oxidized nicotinamide adenine dinucleotide (phosphate) [NAD(P)+] transhydrogenase (EC 1.6.1.1) and NAD(P)+ glutamate dehydrogenase in several enteric bacteria which differ slightly in their regulation of nitrogen metabolism was studied. Escherichia coli strain K-12 was grown on glucose and various concentrations of NH4Cl as the sole nitrogen source. In the range of 0.5 to 20 mM NH4Cl, the energy-independent transhydrogenase increased two to threefold. Comparable changes occurred in NAD(P)+-linked glutamate dehydrogenase. NH4Cl concentrations of 20 to 60 mM resulted in relatively constant specific activities for both enzymes. Higher exogenous NH4Cl, however, led to a decline in both activities. Isocitrate dehydrogenase, another potential source of cellular NADPH, was insensitive to NH4Cl limitation. Similar studies in the presence of glutamate and different exogenous NH4Cl concentrations again showed concerted effects on both enzymes. Growth on glutamate as the sole nitrogen source led to severe repression of both transhydrogenase and glutamate dehydrogenase. In Salmonella typhimurium, both enzymes were unaffected by limiting NH4Cl or growth on glutamate as the sole nitrogen source. Both were, however, repressed by growth on aspartate, a potential source of cellular glutamate. Coordinate changes in glutamate dehydrogenase and transhydrogenase were also evident in Klebsiella aerogenes, particularly under conditions in which glutamate dehydrogenase was regulated inversely to glutamate synthetase. Coordinate changes in glutamate dehydrogenase and transhydrogenase in enteric bacteria are discussed in terms of the possible involvement of the latter enzyme as a direct source of NADPH in the ammonia assimilation system.  相似文献   

10.
Corynebacterium glutamicum is particularly known for its potentiality in succinate production. We engineered C. glutamicum for the production of succinate. To enhance C3–C4 carboxylation efficiency, chromosomal integration of the pyruvate carboxylase gene pyc resulted in strain NC-4. To increase intracellular NADH pools, the pntAB gene from Escherichia coli, encoding for transhydrogenase, was chromosomally integrated into NC-4, leading to strain NC-5. Furthermore, we deleted pgi gene in strain NC-5 to redirect carbon flux to the pentose phosphate pathway (PPP). To solve the drastic reduction of PTS-mediated glucose uptake, the ptsG gene from C. glutamicum, encoding for the glucose-specific transporter, was chromosomally integrated into pgi-deficient strain resulted in strain NC-6. In anaerobic batch fermentation, the production of succinate in pntAB-overexpressing strain NC-5 increased by 14% and a product yield of 1.22 mol/mol was obtained. In anaerobic fed-batch process, succinic acid concentration reached 856 mM by NC-6. The yields of succinate from glucose were 1.37 mol/mol accompanied by a very low level of by-products. Activating PPP and transhydrogenase in combination led to a succinate yield of 1.37 mol/mol, suggesting that they exhibited a synergistic effect for improving succinate yield.  相似文献   

11.
Purified nicotinamide-nucleotide transhydrogenase from beef heart mitochondria was co-reconstituted with bacteriorhodopsin to from transhydrogenase-bacteriorhodopsin vesicles that catalyze a 20-fold light-dependent and uncoupler-sensitive stimulation of the reduction of NADP+ and NADP+ analogs by NADH and a 50-fold shift of the nicotinamide nucleotide ratio. In the presence of light, the transhydrogenase-bacteriorhodopsin vesicles catalyzed a pronounced light intensity-dependent inward proton pumping as indicated by a pH shift of the medium. As indicated by pH shifts, proton pumping by the bacteriorhodopsin essentially paralleled the light-driven transhydrogenase. Addition of valinomycin increased the pH shift twice with a concomitant 50% inhibition of the light-driven transhydrogenase, whereas nigericin inhibited the pH shift completely and the light-driven transhydrogenase partially. Taken together, these results suggest that transhydrogenase and bacteriorhodopsin interact through a delocalized proton-motive force. Possible partial reactions of transhydrogenase were investigated with transhydrogenase-bacteriorhodopsin vesicles energized by light. Reduction of oxidized 3-acetylpyridine adenine dinucleotide by NADH, previously claimed to represent partial reactions, was found to require NADPH. Similarly, reduction of thio-NADP+ by NADPH required NADH. It is concluded that these reactions do not represent partial reactions.  相似文献   

12.
Glutathione-insulin transhydrogenase (EC 1.8.4.2) catalyzes the inactivation of insulin through scission of the disulfide bonds to form insulin A and B chains. In the liver, the transhydrogenase occurs primarily in the microsomal fraction where most of the enzyme is present in a latent (‘inactive’) state. We have isolated rat hepatic microsomes with latent transhydrogenase activity being an integral part of the vesicles. We have used these vesicles to study the topological location of glutathione-insulin transhydrogenase by investigating the effects of detergents (Triton X-100 and sodium deoxycholate), phospholipase A2 and proteinases (trypsin and thermolysin) on the latent enzyme activity. Treatment of intact vesicles with variable concentrations of detergents and phospholipase A2 resulted in the unmasking of latent transhydrogenase activity. The extent of unmasking of transhydrogenase activity is dependent upon the concentration of detergent or phospholipase used and is accompanied by a parallel release of the enzyme into the soluble fraction. Activation of the transhydrogenase by phospholipase A2 is partially inhibited by bovine serum albumin and the extent of inhibition is inversely proportional to the phospholipase concentration. In intact vesicles, latent transhydrogenase activity is resistant to proteolytic inactivation by both trypsin and thermolysin, while in semipermeable and permeable vesicles these proteases inactivate 60 and 25% of the total transhydrogenase activity, respectively. Together these results indicate that in microsomes transhydrogenase is probably weakly bound to membrane phospholipid components and that most of the enzyme is present on the cisternal surface (i.e., the luminal surface of endoplasmic reticulum) of microsomes. Each detergent and phospholipase apparently unmasks glutathione-insulin transhydrogenase activity through disruption of the phospholipid-enzyme interaction followed by translocation of the enzyme to the soluble (cytoplasmic) fraction and not through increases in substrate availability.  相似文献   

13.
In this work, high ΔμH+-dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis. The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent K m for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the K m value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of ΔμH+ for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of ΔμH+ might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, ΔμH+ could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.  相似文献   

14.
Intact spheroplasts, vesicles obtained from French-press lysates (chromatophores), and spheroplast-derived vesicles were isolated from photosynthetically grown cells of Rhodopseudomonas sphaeroides. Lysed spheroplasts showed specific activities of succinate, NADH, and l-lactate dehydrogenase which were eight-, six-, and seven-fold higher, respectively, than those of intact spheroplasts when ferricyanide was used as electron acceptor. Mg2+-ATPase activity of lysed spheroplasts, measured using an assay system coupled to the oxidation of NADH, was seven-fold higher than the activity of intact sheroplasts. Toluene-treated spheroplast-derived vesicles displayed higher succinate dehydrogenase (ferricyanide reduction) and Mg2+-ATPase activities than untreated vesicles whereas no differences were measured between untreated and toluene-treated chromatophores. However, NADH dehydrogenase (ferricyanide reduction) activities of both toluene-treated vesicles and chromatophores were higher than the activities of untreated vesicles and chromatophores. When chromatophores and spheroplast-derived vesicles were preincubated with trypsin, the l-lactate and succinate dehydrogenase activities of chromatophores were preferentially inactivated when phenazine methosulfate was used as electron acceptor. The data indicate that chromatophores are oriented in an opposite direction to the spheroplast-derived vesicles. At least 80% of the latter are oriented in a direction equivalent to the cytoplasmic membrane of intact cells and spheroplasts. Spheroplast-derived vesicles from cells grown with higher light intensities seem to be more uniformly oriented than those obtained from cells grown with lower light intensities.  相似文献   

15.
Membrane vesicles isolated from Staphylococcus aureus cells by ultrasonication possess the NADH-, succinate-, and malate oxidase activities, contain cytochromes a and b and have the lipid/protein ratio of 0.12-0.24. Energized membrane vesicles absorb permeant anions of tetraphenylborate and phenyldicarbaundecaborane. This results in the electric field generation with a "plus" sign on the inner side of the membranes. The generation of the membrane potential occurs in response to the addition of a respiratory substrate (NADH, malate, or succinate) and is inhibited by electron transfer inhibitors, such as rotenone, 2-N-nonyl-4-oxyquinoline-N-oxide, cyanide and the protonophore uncoupler, M-chlorinecarbonylcyanidephenylhydrazonium. The generation of the membrane potential takes place during ATP hydrolysis and in the course of the transhydrogenase reaction. The data obtained suggest the similarity of energization systems of St. aureus and those of animal mitochondria.  相似文献   

16.
Midgut mitochondria from fifth larval instar Manduca sexta exhibit a membrane-associated transhydrogenase that catalyzes hydride ion transfer between NADP(H) and NAD(H). The NADPH-forming transhydrogenations occur as nonenergy- and energy-linked activities. The energy-linked activities couple with electron transport-dependent utilization of NADH/succinate, or with Mg2+-dependent ATPase. These energy-linked transhydrogenations have been shown to be physiologically and developmentally significant with respect to insect larval/pupal maturation. In the present study, isolated mitochondrial membranes were lyophilized and subjected to organic solvent or phospholipase treatments. Acetone extraction and addition of Phospholipase A2 proved to be effective inhibitors of the insect transhydrogenase. Liberation of phospholipids was reflected by measured phosphorous release. Addition of phospholipids to organic solvent- and phospholipase-treated membranes was without effect. Employing a partially lipid-depleted preparation, phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine were reintroduced and transhydrogenase activity assessed. Of the phospholipids tested, only phosphatidylcholine significantly stimulated transhydrogenase activity. The results of this study suggest a phospholipid dependence of the M. sexta mitochondrial transhydrogenase.  相似文献   

17.
1. Protein disulphide-isomerase and glutathione-insulin transhydrogenase activities were assayed in parallel through a conventional purification of protein disulphide-isomerase from ox liver. 2. Throughout a series of purification steps (differential centrifugation, acetone extraction, (NH4)2SO4 precipitation and ion-exchange chromatography), the two activities appeared in the same fractions but were purified to different extents. 3. The final sample was 143-fold purified in protein disulphide-isomerase but only 10-fold purified in glutathione-insulin transhydrogenase; nevertheless the two activities in this preparation were not resolved by high-resolution isoelectric focusing and both showed pI4.65. 4. In a partially purified preparation containing both activities, glutathione-insulin transhydrogenase was far more sensitive to heat denaturation than was protein disulphide-isomerase; conversely protein disulphide-isomerase was more sensitive to inactivation by deoxycholate. 5. The data are inconsistent with a single enzyme being responsible for all the protein disulphide-isomerase and glutathione-insulin transhydrogenase activity of ox liver. It is suggested that several similiar thiol-protein disulphide oxidoreductases of overlapping specificities may better account for the data.  相似文献   

18.
The reversible, membrane-associated transhydrogenase that catalyzes hydride-ion transfer between NADP(H) and NAD(H) was evaluated and compared to the corresponding NADH oxidase and succinate dehydrogenase activities in midgut and fat body mitochondria from fifth larval instar Manduca sexta. The developmentally significant NADPH-forming transhydrogenation occurs as a nonenergy- or energy-linked activity with energy for the latter derived from either electron transport-dependent NADH or succinate utilization, or ATP hydrolysis by Mg++-dependent ATPase. In general, the plant flavonoids examined (chyrsin, juglone, morine, quercetin, and myricetin) affected all reactions in a dose-dependent fashion. Differences in the responses to the flavonoids were apparent, with the most notable being inhibition of midgut, but stimulation of fat body transhydrogenase by morin, and myricetin as also noted for NADH oxidase and succinate dehydrogenase. Although quercetin inhibited or stimulated transhydrogenase activity depending on the origin of mitochondria, it was without effect on either midgut or fat body NADH oxidase or succinate dehydrogenase. Observed sonication-dependent increases in flavonoid inhibition may well reflect an alteration in membrane configuration, resulting in increased exposure of the enzyme systems to the flavonoids. The effects of flavonoids on the transhydrogenation, NADH oxidase, and succinate dehydrogenase reactions suggest that compounds of this nature may prove valuable in the control of insect populations by affecting these mitochondrial enzyme components.  相似文献   

19.
The phospholipid transfer activity of cell extracts from 15 filamentous fungus strains grown on a medium containing phospholipids as the carbon source was measured by a fluorescence assay. This assay was based on the transfer of pyrene-labeled phosphatidylcholines forming the donor vesicles to acceptor vesicles composed of egg phosphatidylcholines. The highest phosphatidylcholine transfer activity was obtained with cell extracts from Aspergillus oryzae. The presence of exogenous phospholipids in the culture medium of A. oryzae was shown to increase markedly the activity of phospholipid transfer as well as the pool of exocellular proteins during the primary phase of growth. Modifications in the biochemical marker activities of cellular organelles were observed: succinate dehydrogenase, a mitochondrial marker; inosine diphosphatase, a Golgi system marker; and cytochrome c oxidoreductase, an endoplasmic reticulum marker, were increased 7.3-, 2-, and 22-fold, respectively, when A. oryzae was grown in the presence of phospholipids.  相似文献   

20.
The marine bacterium, Beneckea natriegens, which has previously been reported not to form transhydrogenase, has been shown to synthesize a soluble energy-independent transhydrogenase (NADPH:NADP+ oxidoreductase, EC 1.6.1.1), though no energy-linked activity could be detected. The transhydrogenase is induced maximally in stationary phase cells and its formation is 70-90% repressed by raising the medium phosphate level from 0.33 to 3.3 mM. The enzyme is inhibited by arsenate, inorganic ortho- and pyrophosphate and by a range of organic phosphate-containing compounds, including 2'-AMP, which is an activator of several bacterial transhydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号