首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The weak hydrophobic acid carbonylcyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) is a protonophoric uncoupler of oxidative phosphorylation in mitochondria. It dissipates the electrochemical proton gradient (ΔμH +) increasing the mitochondrial oxygen consumption. However, at concentrations higher than 1 μM it exhibits additional effects on mitochondrial energy metabolism, which were tentatively related to modifications of electrical properties of the membrane. Here we describe the effect of FCCP on the binding of 1-anilino-8-naphthalene sulfonate (ANS) to 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) unilamellar vesicles. FCCP inhibited the binding of ANS to liposomes either in the gel or in the liquid crystalline phase, by increasing the apparent dissociation constant of ANS. Smaller effect on the dissociation constant was observed at high ionic strength, suggesting that the effect of FCCP is through modification of the electrostatic properties of the membrane interface. In addition, FCCP also decreased (approximately 50 %) the quantum yield and increased the intrinsic dissociation constant of membrane-bound ANS, results that suggest that FCCP makes the environment of the ANS binding sites more polar. On those grounds we postulate that the binding of FCCP: i) increases the density of negative charges in the membrane surface; and ii) distorts the phospholipid bilayer, increasing the mobility of the polar headgroups making the ANS binding site more accessible to water.  相似文献   

2.
Low concentrations of Mg2+ (concn < 10 mm) generate structural changes in delipidated spinach chloroplast lamellae, that appear as changes in the fluorescence yield of native tryptophyl residues and of the externally added polarity probe magnesium 1-anilinonaphthalene-8-sulfonate.The delipidated lamellae, consisting essentially of structural protein monomers and aggregates, bind magnesium 1-anilinonaphthalene-8-sulfonate to the extent of 126 ± 13 nmol/mg protein, and with a dissociation constant KD = 167 μM. Bound ANS fluoresces at 458 nm with a quantum yield Φ = 0.121. Tryptophyls sensitize the fluorescence of bound ANS with a maximal efficiency Tmax = 0.85. Assuming completely random orientation of the interacting chromophores, an interchromophore separation R = 17.3 A? is calculated. Only two-thirds of the membrane tryptophyls have ANS-binding sites in their vicinity.Mg2+ binds to the delipidated membranes with a dissociation constant KD = 2 mM. The binding is attended by enhancement of magnesium 1-anilinonaphthalene-8-sulfonate fluorescence, and deenhancement of tryptophyl fluorescence, while the efficiency of interchromophore excitation transfer increases only slightly. These effects suggest that Mg2+ generates a structural change which lowers the polarity of the membrane region where tryptophyl and magnesium 1-anilinonaphthalene-8-sulfonate are situated, but which has a minor effect only on the interchromophore separation.  相似文献   

3.
ANS binding parameters--dissociation constant, number of binding sites, rotation freedom--are measured by fluorescence studies of a complex between ANS and lymph node cell plasma membranes. Divalent ions, Mg++ and Ca++, enhance the complex fluorescence intensity without shifting its maximum wavelength : this enhancement is induced by affinity and quantum yield increases, while the number of binding sites remains constant. The complex fluorescence quenching by ethacrynic acid shows the presence of free SH groups in the ANS binding site. An energy transfer takes place between membrane protein tryptophan residues and bound ANS ; the energy transfer yield is unaffected by Ca++ ions. A correlation of these results is postulated with the biological activity of the membrane.  相似文献   

4.
Steady-state and dynamic fluorescence titrations show that: (a) the complex between beta-lactoglobulin (BLG) and 1-anilinonaphthalene-8-sulfonate (ANS) displays a heterogeneous equilibrium with large changes in the binding strength vs. pH and ion concentration; and (b) the fluorescence response of bound ANS reveals two separate lifetimes that suggest two different sites (or binding modes). While steady-state fluorescence titrations yield effective values of the binding constant and of the bound ANS quantum efficiency, it is shown that, by combining steady-state fluorescence and lifetime decay of ANS, it is possible to give quantitative estimates of the association constants for each site. When heading from the acid (pH approximately 2) to the native state (pH approximately 6) the main result is a very large reduction of the effective binding constant. This and the results of titrations vs. ionic strength suggest that electrostatic interactions are a major contribution to ANS binding to BLG.  相似文献   

5.
L D Ward  S N Timasheff 《Biochemistry》1988,27(5):1508-1514
The high-affinity metal divalent cation Mg2+, associated with the exchangeable guanosine 5'-triphosphate (GTP) binding site (E site) on purified tubulin, has been replaced by the transition metal ion Co2+ on tubulin as well as on the tubulin-colchicine, tubulin-allocolchicine and tubulin-8-anilino-1-naphthalenesulfonic acid (tubulin-ANS) complexes. While pure native tubulin readily incorporated 0.8 atom of Co2+ per tubulin alpha-beta dimer, incorporation was reduced to 0.4 atom of Co2+ per mole of tubulin when it was complexed with colchicine, indicating that the conformational change induced in tubulin by the binding of colchicine leads to a reduced accessibility of the divalent cation binding site linked to the E site without necessarily changing the intrinsic binding constant. The fluorescence emission spectra of tubulin-bound colchicine, allocolchicine, and ANS displayed a strong overlap with the Co2+ absorption spectrum, identifying these as adequate donor-acceptor pairs. Fluorescence energy-transfer measurements were carried out between tubulin-bound colchicine (or allocolchicine) and ANS as donors and tubulin-complexed Co2+ as acceptor. It was found that the distance between the ANS and the high-affinity divalent cation binding sites is greater than 28 A, while that between the colchicine and the divalent cation binding sites is greater than 24 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The properties of the membrane of intact, metabolically active, human persmatozoa have been studied by the use of 1-anilino-8-napthalene sulfonate (ANS). By fluorescence microscopy it was found that at neutral pH ANS is bound exclusively to the membrane of the entire sperm with some preferential binding to the midpiece, while at low pH some preferential binding to the aerosome was observed. By spectrofluorimetry, fluorescence was found to be enhanced 48-fold on binding of ANS to the spermatozoal membrane, with a 50-nm shift in the emission spectrum of the bound dye. 2.47 ± 0.02 nmoles of ANS were bound per 106 spermatozoa (K=2.3–10?5M). Scatchard plots indicate that all the binding sites on the spermatozoal membrane have similar binding characteristics with aZ value of 84.8. Energy transfer with an efficiency of 7% was found for recently ejaculated spermatozoa. The fluorescence of bound ANS depends on the pH of the medium and possibly on the metabolic state of the cell, since addition of succinate or fructose produces an enhancement of fluorescence, while addition of glucose results in a decrease of this parameter. These changes are inhibited by the presence of cyanide.  相似文献   

7.
Summary By using the technique of intracellular perfusion combined with fluorescence measurements, the mode of binding of 6-p-toluidinylnaphthalene-2-sulfonate (2–6 TNS) in a squid giant axon was examined. The apparent dissociation constant for the binding sites in axons was found to be roughly 0.22mm. Out of approximately 5×1014 molecules/cm2 of 2–6 TNS bound to the sites in and near the axonal membrane, roughly 2×1010 molecules/cm2 are shown to contribute to a transient decrease in fluorescence during nerve excitation. By recording fluorescence signals with a polarizer and analyzer inserted in four different combinations of orientations, studies were made of the directions of the transition moments of various probe molecules relative to the longitudinal axis of the axon. Among hydrophobic probes examined, the polarization characteristics of the fluorescence signals obtained with 1–8 derivatives of aminonaphthalenesulfonate (1-8 ANS, 1-8 TNS and 1-8 AmNS) were found to be very different from those obtained with 2–6 derivatives (2-6 ANS, 2-6 TNS and 2-6 MANS). A tentative interpretation is proposed to account for this difference in physiological behavior between 1–8 and 2–6 derivatives. It is emphasized that measurements of fluorescence polarization yield significant information concerning the structure of the axonal membrane.  相似文献   

8.
Binding of the Hydrophobic ligands 1,8-anilinonaphthalenesulfonic acid (ANS) and 2,6-toluidinylnaphthalenesulfonic acid (TNS) to a variety of plant lectins was studied by lectin-induced alteration of the fluorescence spectra of the two ligands. With one exception, all legume lectins examined bound ANS, with affinity constants ranging from 103 to 104 M?1. Similar ANS binding was noted for some nonlegume lectins. Titration of the five isolectins from Phaseolus vulgaris with ANS indicated positive cooperative binding of ANS to the two isolectins E4 and E3L1. Titrations with TNS revealed high-affinity sites for this ligand in a number of lectins. Addition of haptenic sugars did not inhibit binding of ANS, suggesting that the hydrophobic binding sites of lectins are independent of the carbohydrate binding sites.  相似文献   

9.
The fluorescent probe l-anilinonaphthalene-8-sulfonate (ANS) has been used to investigate the properties of plasma membranes derived from normal hepatocytes and from hepatoma tissue culture (HTC) cells as well as used to study the effects of Ca2+ and procaine on these membrane systems. The interaction of ANS with hepatocyte plasma membranes (50 nmol/mg protein; KD = 120,μM) resulted in a marked enhancement of fluorescence and a 20-nm blue shift. Both Ca2+ and procaine further increased the fluorescence intensity. Binding studies showed no alteration in the number of ANS binding sites but a significant decrease in KD (40–50 μm). Procaine was also shown to completely displace Ca2+ from the membrane. The interaction of ANS with HTC cell plasma membranes again resulted in an enhancement in fluorescence intensity but with different binding properties (102 nmol/mg protein; KD = 74 μM) from the hepatocyte system. The addition of Ca+2 resulted in the formation of high and low affinity ANS binding sites as shown by Scatchard plot analysis with KD values of 15 μm and 50 μm. The effect of procaine on ANS fluorescence in the normal and transformed cell membranes was indistinguishable; however, in the latter system procaine only displaced 60% of the bound Ca2+. These studies suggest several structural and binding alterations between plasma membranes derived from hepatocytes and HTC cells.  相似文献   

10.
S S Wong  P A Frey 《Biochemistry》1978,17(17):3551-3556
Escherichia coli UDP-galactose 4-epimerase in its native form (epimerase.NAD) binds 8-anilino-1-naphthalenesulfonate (ANS) at one tight binding site per dimer with a dissociation constant of 25.9 +/- 2.1 micrometer at pH 8.5 and 27 degrees C. This appears to be the substrate binding site, as indicated by the fact that ANS is a kinetically competitive reversible inhibitor with a Ki of 27.5 micrometer and by the fact that ANS competes with UMP for binding to the enzyme. Upon binding at this site the fluorescence quantum yield of ANS is enhanced 185-fold, and its emission spectrum is blue shifted from a lambdamax of 515 to 470.nm, which suggests that the binding site is shielded from water and probably hydrophobic. Competitive binding experiments with nucleosides and nucleotides indicate that nucleotide binding at this site involves coupled hydrophobic and electrostatic interactions. The reduced form of the enzyme (epimerase.NADH) has no detectable binding affinity for ANS. The marked difference in the affinities of the native and reduced enzymes for ANS is interpreted to be a manifestation of a conformational difference between these enzyme forms.  相似文献   

11.
CD, electron spin resonance, and fluorescence spectroscopy have been utilized to study the adenine binding site of ricin and its toxic A-subunit. At acidic (4.5) and physiological (7.3) pH, adenine or a spin-labeled analogue of adenine, N6-(2,2,6,6-tetramethyl-1-oxypiperidin-4-yl) adenine, alters the near uv CD spectra of the ricin A-chain as well as intact ricin, whereas the far uv CD spectra of all proteins remain unchanged. Electron spin resonance data show that the adenine spin-labeled analogue interacts strongly with the A-chain both at pH 4.5 and 7.3, but no or very weak binding is observed for the intact ricin or the isolated B-chain. The adenine spin label gets highly immobilized (2AII = 65.5G) by the A-chain. The apparent dissociation constant Kd for the toxic A-chain ligand complex is 1.55 × 10?4 M and 5.6 × 10?5 M at pH 7.3 and 4.5, respectively. Fluorescence intensity of ricin A-chain bound 1,8-anilinonaphthalenesulfonic acid (ANS) decreases by ~55% at pH 4.5 with the addition of the spin-labeled analogue of adenine, implying that both the ANS and adenine spin label (ADSL) bind to the hydrophobic domain of the A-chain. Fluorescence of the only intrinsic tryptophan probe of the A-chain is also efficiently quenched by ADSL, indicating that the tryptophan residue and the hydrophobic adenine binding site are closely located. All spectroscopic measurements indicate that adenine or its spin-labeled analogue has a single binding site adjacent to the TRP211 residue in the A-chain. Expansion of the A-chain globule and subsequent exposure of the hydrophobic binding site seem to be responsible for the increased binding of adenine at pH 4.5. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
It was indicated from fluorescence spectra and fluorescence titration that a hydrophobic probe, 1-anilino-8-naphthalenesulfonate (ANS), binds to casein components (αs-, β- and κ-caseins). Fluorescence intensity and affinity of ANS-κ-casein complex were larger than that of ANS-αs- and ANS-β-casein complexes. Enhancements of fluorescence intensity of complexes of casein components were observed by the addition of KCI or CaCl2. Reason for the enhancement was postulated to be the increase of the quantum yield of the ANS fluorescence caused by the environmental change of ANS binding region of the casein components.

Marked increase of sedimentation coefficient of β-casein in the presence of KCl or CaCl2 at 10°C was caused by the addition of ANS. This may be responsible for the stimulation of the Ca-dependent precipitation of β-casein by the addition of ANS.

It was found that αs · κ-association was prevented by ANS and that hydrophobic interaction have an important role for αs · κ-association.  相似文献   

13.
Summary (1) When salts are added to buffered suspensions of membrane fragments containing the fluorochrome 1-anilino-8-naphthalenesulfonate (ANS), there is an increased fluorescence. This is caused by increased binding of the fluorochrome; the intrinsic fluorescence characteristics of the bound dye remain unaltered. These properties make ANS a sensitive and versatile indicator of ion association equilibria with membranes. (2) Alkali metal and alkylammonium cations bind to membranes in a unique manner. Cs+ binds most strongly to rat brain microsomal material, with the other alkali metals in the order Cs+>Rb+>K+>Na+>Li+. The reaction is endothermic and entropy driven. Monovalent cations are displaced by other monovalent cations. Divalent cations and some drugs (e. g., cocaine) displace monovalent cations more strongly. (3) Divalent cations bind to membranes (and to lecithin micelles) at four distinct sites, having apparent association constants between 50 and 0.2mm –1. The characteristics of the titration suggest that only one species of binding site is present at any one time, and open the possibility that structural transitions of the unassociated coordination sites may be induced by divalent cation binding. Divalent cation binding at the weakest site (like monovalent cation binding) is endothermic and entropy driven. At the next stronger site, the reaction is exothermic. Monovalent cations affect divalent cation binding by reducing the activity coefficient: they do not appear to displace divalent cations from their binding sites.  相似文献   

14.
The fluorescence of 1,8-anilinonaphthalene sulfonate (ANS) was enhanced in the presence of ovine lutropin (oLH). Fluorescence titration curves were sigmoidal with 50% saturation between 200 and 500 μm. Exclusion chromatography experiments indicated that the hormone self-associates to form dimers in the presence of excess ANS. By contrast, the isolated a and β subunits of oLH caused a much smaller enhancement of the fluorescence of ANS and did not self-associate in its presence. Dissociation of the intact hormone into its subunits was accompanied by 1) a loss in the ability to enhance ANS fluorescence, 2) the appearance of a negative differential absorption spectrum whose magnitude indicated the increased solvent-exposure of at least two tyrosines, and 3) a loss in conformational rigidity as evidenced by a decrease in polarization (P) of tyrosyl fluorescence from ~0.17 to ~0.13. Similar rates of dissociation were obtained by all three measurements and the first order rate constant at pH 3.6 and 37 °C under conditions of low ionic strength was k = 0.18 min?1; at high ionic strength, e.g., 0.5 m KC1, dissociation was incomplete even after prolonged incubation. Acid-dissociated subunits recombined readily in 0.5 m acetate buffer, pH 5.3, and the recovery of the intrinsic absorption and fluorescence properties as well as the ability to enhance ANS fluorescence ranged between 70 and 90%. Titration of the isolated α and β subunits with acid or GdmCl had little or no effect on P, suggesting that residual secondary or tertiary structure is either absent, very stable, or its disruption does not alter the rigidity of the tyrosyl environment. The relatively high P for oLH-β (0.17) suggests a conformation which is rigid compared with oLH-α (0.13). P for both subunits decreased smoothly with increasing temperature between 20 and 70 °C. By contrast, oLH exhibited a thermal transition near 50 °C characterized by a drop in P from a value near that of β to a value near that of a as the subunits dissociated. Because α has more tyrosines with a higher average quantum yield, its fluorescence would be expected to dominate that of the hormone or of an equimolar mixture of subunits. Thus, most of the conformation changes which accompany dissociation and recombination appear to occur in the α subunit.  相似文献   

15.
The binding of ANS to apolactate dehydrogenase (apo-LDH) is accompanied by a 300-fold increase in dye fluorescence with a shift of the emission maximum from 515 to 479 nm, as well as by quenching of intrinsic protein fluorescence. A tetrameric LDH molecule has 6.4 +/- 1.6 non-interacting dye-binding sites with an association constant equal to (4.3 +/- 1.6) X 10(3) M-1. NAD+ added at saturating concentrations does not alter the number of ANS binding sites or the association constant value. The formation of binary LDH.NAD+, LDH.NADH, LDH.AMP and LDH.pyruvate complexes causes the quenching of fluorescence of the enzyme-bound ANS. The extent of quenching observed at ligand saturating concentrations differs for each ligand. Pyruvate added to the binary LDH.AMP complex exerts no effect on the fluorescence of protein-bound ANS; this indicates that the binding of AMP causes some alterations in the microenvironment of the substrate-binding site. Nicotinamide mononucleotide (NMN) can act as a coenzyme in the LDH-catalyzed reaction. AMP added together with NMN displays an inhibitory effect. The cationic (auramine O) and anionic (ANS) fluorescent probes bound to LDH exhibit different responses to conformational changes accompanying the transition from the apoenzyme to the LDH X NAD-pyruvate complex.  相似文献   

16.
Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple‐ligand‐binding system, determining quantitative parameters such as a dissociation constant (Kd) is difficult. Here, we used a method we named CS‐PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β‐lactoglobulin (βLG) and 1‐anilinonaphthalene‐8‐sulfonate (ANS), which is a multiple‐ligand‐binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG–ANS complexes for each binding site. In addition, we determined the Kd values as 3.42 × 10−4M2 and 2.51 × 10−3M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable Kd values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS‐PCA was confirmed to provide not only the positions and the Kd values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein–ligand interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Addition of 8-anilino-1-naphthalenesulfonate (ANS) to acid-denatured pectate lyase C (pelC) leads to a large increase in the fluorescence quantum yield near 480 nm. The conventional interpretation of such an observation is that the ANS is binding to a partially folded intermediate such as a molten globule. Far-ultraviolet circular dichroism demonstrates that the enhanced fluorescence results from the induction of a partially folded protein species that adopts a large fraction of native-like secondary structure on binding ANS. Thus, ANS does not act as a probe to detect a partially folded species, but induces such a species. Near-ultraviolet circular dichroism suggests that ANS is bound to the protein in a specific conformation. The mechanism of ANS binding and structure induction was probed. The interaction of acid-unfolded pelC with several ANS analogs was investigated. The results strongly indicate that the combined effects of hydrophobic and electrostatic interactions account for the relatively high binding affinity of ANS for acid-unfolded pelC. These results demonstrate the need for caution in interpreting enhancement of ANS fluorescence as evidence for the presence of molten globule or other partially folded protein intermediates.  相似文献   

18.
This paper studied the effects of cations and polymer matrix on the fluorescent properties of quantum dots (QDs). The results indicated that temperature has a greater impact on fluorescence intensity than clay cations (mainly K+ and Na+). Combined fluorescence lifetime and steady‐state spectrometer tests showed that QD lifetimes all decreased when the cation concentration was increased, but the quantum yields were steady at various cation concentrations of 0, 0.05, 0.5 and 1 M. Poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and diepoxy resin were used to study the effects of polymers on QD lifetime and quantum yield. The results showed that the lifetime for QDs 550 nm in PEO and PVA was 17.33 and 17.12 ns, respectively; for the epoxy resin, the lifetime was 0.74 ns, a sharp decrease from 24.47 ns. The quantum yield for QDs 550 nm changed from 34.22% to 7.45% and 7.81% in PEO and PVA, respectively; for the epoxy resin the quantum yield was 2.25%. QDs 580 nm and 620 nm showed the same results as QDs 550 nm. This study provides useful information on the design, synthesis and application of QDs–polymer luminescent materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Neutral salts activate and stabilize thermolysin. In this study, to explore the mechanism, we analyzed the interaction of 8-anilinonaphthalene 1-sulphonate (ANS) and thermolysin by ANS fluorescence. At pH 7.5, the fluorescence of ANS increased and blue-shifted with increasing concentrations (0–2.0?μM) of thermolysin, indicating that the anilinonaphthalene group of ANS binds with thermolysin through hydrophobic interaction. ANS did not alter thermolysin activity. The dissociation constants (Kd) of the complex between ANS and thermolysin was 33?±?2?μM at 0?M NaCl at pH 7.5, decreased with increasing NaCl concentrations, and reached 9?±?3?μM at 4?M NaCl. The Kd values were not varied (31?34?μM) in a pH range of 5.5?8.5. This suggests that at high NaCl concentrations, Na+ and/or Cl ions bind with thermolysin and affect the binding of ANS with thermolysin. Our results also suggest that the activation and stabilization of thermolysin by NaCl are partially brought about by the binding of Na+ and/or Cl ions with thermolysin.  相似文献   

20.
Chloroplast coupling factor 1 (CF1) contains a high-affinity binding site for 8-anilino-1-napthalene sulphonate (ANS,Kd = 5-6 microM). The binding of ANS to the enzyme is associated with a fluorescence enhancement and a blue-shift in the emission spectrum. ANS only slightly inhibits ATP hydrolysis by CF1. Adenine nucleotides and inorganic phosphate induce a fast ANS fluorescence quenching of about 50% which is due to a decrease in the affinity of the enzyme for ANS (Kd increases from 6 microM to 22 microM) and in the fluorescence quantum yield of the bound probe (by 33%) but not in the number of ANS sites (n = 1). Conversely, Mg and Ca ions induce a fluorescence enhancement of bound ANS. Inactivation of the enzyme enhances ANS fluorescence, eliminates the response to adenine nucleotides and inorganic phosphate but increases the response to divalent metals. The affinity of latent CF1 for ADP (Kd = 12 microM) is considerably higher than for ATP (Kd = 95 microM) in buffer containing EDTA. The Kd for inorganic phosphate is 140 microM. Mg increases the apparent affinity for ATP (Kd = 28 microM) but not for ADP or Pi. Binding of ATP to the tight-sites does not inhibit the ADP or Pi-induced fluorescence quenching but decreases the affinity for ADP (Kd = 34 microM) and for inorganic phosphate (Kd = 320 microM). These results suggest that the ADP and phosphate binding sites are different but not independent from the tight sites. Activation of a Mg-specific ATPase in CF1 by octyl glucoside decreases the affinity for ADP and inorganic phosphate by about threefold but increases the affinity for ATP. ATPase activation of CF1 also increases the Ki for ADP inhibition of ATP hydrolysis. ATPase activation also influences the ANS responses to Ca and Mg. Ca-ATPase activation increases the fluorescence enhancement and the apparent affinity for Ca whereas Mg-ATPase activation specifically increases the Mg-induced fluorescence enhancement. The fluorescence of CF1-bound ANS is enhanced by Dio-9 and quenched by phloridzin, quercetin, Nbf-Cl and FITC. Nbf-Cl and FITC completely inhibit the ADP-induced fluorescence quenching whereas Dio-9 inhibits the Mg-induced fluorescence enhancement. ANS does not relieve the quercetin or phloridzin inhibition of ATP hydrolysis indicating that these inhibitors do not compete with ANS for a common binding site. ANS may be used, therefore, as a sensitive probe to detect conformational changes in CF1 in response to activation or inactivation and to binding of substrates and of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号