首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha macroglobulins of rat serum.   总被引:5,自引:0,他引:5       下载免费PDF全文
Cortex of rat kidney was homogenized and fractions enriched in plasma membrane, endoplasmic reticulum or brush border were prepared by several techniques of differential centrifugation. The identity and homogeneity of the membrane fragments were investigated by assaying marker enzymes and by transmission and scanning electron microscopy. Kallikrein was present in both plasma-membrane- and endoplasmic-reticulum-enriched fractions isolated by two fractionation procedures. Kallikrein was highly concentrated in a plasma-membrane fraction but was absent from the brush-border membrane of proximal tubular cells. Cells of transplanted renal tumours of the rat, originating from the proximal tubule, had no kallikrein activity. Kininase activity, angiotensin I-converting enzyme (kininase II) and angiotensinase were found in a plasma-membrane-enriched fraction and especially in the fraction containing isolated brush border. It is suggested that after renal kallikrein is synthesized on endoplasmic reticulum, it is subsequently reoriented to a surface membrane for activation and release. Renal kallikrein may enter the tubular filtrate distal to the proximal tubules. The brush-border membrane of proximal tubule is the major site of inactivation of kinins and angiotensin II..  相似文献   

2.
Phosphate-independent glutaminase can be quantitatively solubilized from a microsomal preparation of rat kidney by treatment with papain. Subsequent gel filtration and chromatography on quaternary aminoethyl (QAE)-Sephadex and hydroxylapatite yield a 200-fold purified preparation of this glutaminase. The purified enzyme also hydrolyzes gamma-glutamylhydroxamate and exhibits substrate inhibition at high concentrations of either glutamine or gamma-glutamyhydroxamate, which is partially relieved by increasing concentrations of maleate. Rat kidney phosphate-independent glutaminase reaction is catalyzed by the same enzyme which catalyzes the gamma-glutamyltranspeptidase reaction. The ratio of glutaminase to transpeptidase activities remained constant throughout a 200-fold purification of this enzyme. The observation that the phosphate0independent glutaminase and gamma-glutamyltranspeptidase activities exhibit coincident mobilities during electrophoresis, both before and after extensive treatment with neuraminidase, strongly suggests that both reactions are catalyzed by the same enzyme. This conclusion is strengthened by the observation that maleate and various amino acids have reciprocal effects on the two activities. Maleate increases glutaminase activity and blocks transpeptidation, whereas amino acids activate the transpeptidase but inhibit glutaminase activity. In contrast, the addition of both maleate and alanine resulted in a strong inhibition of both activities. Both activities exhibit a similar distribution in the various regions of the kidney. Recovery of maximal activities in the outer stripe region of the medulla is consistent with previous quantitative microanalysis which indicated that this glutaminase activity is localized primarily in the proximal straight tubule cells. The glutaminase and transpeptidase activities have different pH optima. Examination of the product specificity suggests that decreasing pH also promotes glutaminase activity and that below pH 6.0, this enzyme functions strictly as a glutaminase. Because of the localization of this activity on the brush border membrane, these resuts are consistent with the possibility that the physiological conditions induced by metabolic acidosis could convert this enzyme from a broad specificity transpeptidase to a glutaminase. Therefore, this enzyme could contribute to the increased renal synthesis of ammonia from glutamine which is observed during metabolic acidosis.  相似文献   

3.
《Molecular membrane biology》2013,30(3-4):203-219
Brush border membrane vesicles were isolated from rat kidney cortex by differential centrifugation in the presence of 10 mM calcium. Their properties were compared to brush border vesicles isolated by free-flow electrophoresis. By the calcium precipitation method membrane vesicles were obtained in a shorter time with a similar enrichment of brush border marker enzymes (11- to 12-fold for alkaline phosphatase and maltase), with a similarly reduced activity of the marker enzyme for basal-lateral plasma membranes and an almost identical protein composition as revealed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The transport properties of the two membrane preparations for D-glucose, L-phenylalanine, and phosphate are essentially the same; there is some indication for a lower sodium permeability of the vesicles prepared by the calcium precipitation method. The latter vesicles were also shown to exhibit sodium gradient stimulated uptake of L-glutamate.  相似文献   

4.
G Kirk  S B Prusiner 《Life sciences》1977,21(6):833-840
Comparative subcellular fractionation studies on rat kidney and bovine choroid plexus using differential centrifugation and free flow electropheresis were undertaken because of the morphological and functional similarities of the epithelial cells of both tissues. The activities of three enzymes commonly used as markers for brush border membranes in kidney were measured in fractions of each tissue. γ-Glutamyl transpeptidase, alkaline phosphatase, and 5'-nucleotidase copurified in membrane fractions of renal cortex collected by differential centrifugation. Application of a similar fractionation procedure to choroid plexus gave relatively similar results, except for alkaline phosphatase, the yield of which was substantially reduced in a fraction enriched with two marker enzymes. Further fractionation of γ-glutamyl transpeptidase and alkaline phosphatase activities in these membrane fractions was achieved using free flow electropheresis. The two enzymes from kidney exhibited discrete peaks with a small separation, while the electropheretic pattern of γ-glutamyl transpeptidase from choroid plexus was biphasic. Alkaline phosphatase was observed to migrate with the more basic γ-glutamyl transpeptidase peak.  相似文献   

5.
A new technique has been developed for the isolation of membrane vesicles from the vitamin D-deficient and vitamin D-treated chick intestinal brush border membrane. The technique involves removal of nuclei from a low speed pellet by discontinuous sucrose gradient centrifugation. The resulting intact brush borders are then homogenized in 0.5 M Tris and the membrane fragments purified on a glycerol gradient. This preparation represents a 20-fold purification of the brush border marker sucrase. After 1α-hydroxyvitamin D3 treatment there is a significant increase in membrane phospholipid phosphorous, an alteration in the fatty acid composition of the phosphatidylcholine fraction of membrane phospholipid, and a decrease in sucrase specific activity.  相似文献   

6.
Summary The aim of this study was to provide further evidence for the existence of a nonmitochondrial bicarbonate-stimulated Mg2+-ATPase in brush border membranes derived from rat kidney cortex. A plasma membrane fraction rich in brush border microvilli and a mitochondrial fraction were isolated by differential centrifugation. Both fractions contain a Mg2+-ATPase activity which can be stimulated by bicarbonate. The two Mg2+-ATPases are stimulated likewise by chloride, bicarbonate, and sulfite or inhibited by oligomycin and aurovertin, though to different degrees. In contrast to these similarities, only the Mg2+-ATPase activity of the mitochondrial fraction is inhibited by atractyloside, a substance which blocks an adenine nucleotide translocator in the inner mitochondrial membrane. On the other hand, filipin, an antibiotic that complexes with cholesterol in the membranes inhibits exclusively the Mg2+-ATPase of the cholesterol-rich brush border membranes. Furthermore it could be demonstrated by the use of bromotetramisole, an inhibitor of alkaline phosphatase activity, that the Mg2+-ATPase activity in the membrane fraction is not due to the presence of the highly active alkaline phosphatase in these membranes. These results support the assumption that an intrinsic bicarbonate-stimulated Mg2+-ATPase is present in rat kidney brush border membranes.  相似文献   

7.
The subcellular localization of enterokinase is controversial. In this study, enterokinase was extracted from a soluble fraction and a brush border fraction of rat small intestine by differential centrifugation. The soluble fraction contained 41% of the initial enterokinase activity while the brush border fraction contained only 4.6% of the initial activity. In contrast, alkaline phosphatase monitored as a brush border marker, yielded 26.3 in the brush border fraction and only 6% in the soluble fraction. Further separation of the soluble fraction on a Sepharose 4B column revealed three peaks of enterokinase activity. One small peak (3%) of a bound enzyme (Mr, 2·10?6) and two larger peaks of free enzyme (Mr, 3·105 and 9·105). In contrast, alkaline phosphatase major fraction was in a high molecular weight peak of bound enzyme. When the brush border fraction was chromatographed only a single peak of bound enterokinase and alkaline phosphatase were found. In the lower part of the small intestine, no brush border-bound enterokinase was found, while the peak of alkaline phosphatase was the same as in the upper intestine. These data suggest that enterokinase activity in the rat intestine is mainly in a free form localized in the mucin and soluble fraction and to a negligible extent in the brush border.  相似文献   

8.
A new technique has been developed for the isolation of membrane vesicles from the vitamin D-deficient and vitamin D-treated chick intestinal brush border membrane. The technique involves removal of nuclei from a low speed pellet by discontinuous sucrose gradient centrifugation. The resulting intact brush borders are then homogenized in 0.5 M Tris and the membrane fragments purified on a glycerol gradient. This preparation represents a 20-fold purification of the brush border marker sucrase. After 1alpha-hydroxyvitamin D3 treatment there is a significant increase in membrane phospholipid phosphorous, an alteration in the fatty acid composition of the phosphatidylcholine fraction of membrane phospholipid, and a decrease in sucrase specific activity.  相似文献   

9.
Thyroxine 5'-monodeiodinase is located in the proximal tubules of the rabbit kidney. To estimate the subcellular distribution of 5'-monodeiodinase activity, we prepared subcellular fractions, a basolateral membrane fraction and a brush border membrane fraction, from kidneys of Japanese white rabbits. Each fraction (0.5 mg protein) was incubated at 37 degrees C for 60 min with 0.5 micrograms T4 in the presence of 5 mM DTT. The T3 generated in the reaction mixture was extracted with cold ethanol and measured by RIA. For analysis of propylthiouracil-insensitive thyroxine 5'-monodeiodinase, we examined its kinetic behavior at nanomolar concentrations of the substrate, T4, in the presence of 100 microM propylthiouracil. In order of decreasing activity, basolateral membrane, microsomal fraction, mitochondrial fraction, cytosolic fraction, brush border membrane and nuclear fraction were capable of converting T4 to T3. Upon addition of 10(-5) M propylthiouracil to the reaction mixture, 5'-monodeiodinase activities of basolateral membrane and brush border membrane were inhibited by more than 90%, but that of microsomes was inhibited by only about 50%. In addition, kinetic analysis of microsomal 5'-monodeiodinase activity at nanomolar T4 concentrations in the presence of 10(-4) M propylthiouracil suggested on apparent Km of 3.8 nmol. These results indicate that there is high-Km 5'-monodeiodinase activity (PTU-sensitive) in the basolateral and brush border membranes and also high-Km and low-Km 5'-monodeiodinase (PTU-insensitive) in the microsomes of rabbit kidney.  相似文献   

10.
Basolateral membranes obtained by self-orienting Percoll-gradient centrifugation were treated with 5 mM CaCl2 to minimize the cross-contamination by brush border membranes. From marker enzyme-specific activities it was calculated that in this preparation the basolateral/brush border membrane ratio was 22.6. A low L-glucose permeability across basolateral membrane vesicles together with ATP-dependent sodium uptake was observed.  相似文献   

11.
Combined differential and density gradient centrifugation was used for the isolation of a capillary-rich fraction from the cerebral cortex and a brush border containing fraction from the bovine choroid plexus. The activities of γ-glutamyl transpeptidase and several other marker enzymes were monitored during the fractionation procedure. Electron microscopic examination showed a membrane-rich fraction in the choroid plexus high in γ-glutamyl transpeptidase and 5'-nucleotidase activities. From the brain cortex, a capillary-rich fraction was obtained which was high in γ-glutamyl transpeptidase and alkaline phosphatase activities. A histochemical examination showed γ-glutamyl transpeptidase activity localized in the capillary walls.  相似文献   

12.
Combined differential and density gradient centrifugation was used for the isolation of a capillary-rich fraction from the cerebral cortex and a brush border containing fraction from the bovine choroid plexus. The activities of gamma-glutamyl transpeptidase and several other marker enzymes were monitored during the fractionation procedure. Electron microscopic examination showed a membrane-rich fraction in the choroid plexus high in the gamma-glutamyl transpeptidase and 5'-nucleotidase activities. From the brain cortex, a capillary-rich fraction was obtained which was high in gamma-glutamyl transpeptidase and alkaline phosphatase activities. A histochemical examination showed gamma-glutamyl transpeptidase activity localized in the capillary walls.  相似文献   

13.
Sperm maturation and storage occur in a unique milieu created in large part by the epididymal epithelium. To learn more about the interaction of the epididymal epithelial cell with both luminal and systemic environments, we now report on the preparation and characterization of epididymal epithelial cell plasma membranes. A preparation enriched for epididymal epithelial cell plasma membranes was isolated from collagenase-digested epididymal tubule fragments by hand-Dounce homogenization, differential centrifugation, and sucrose gradient centrifugation. The final membrane fraction was enriched 11-fold for the plasma membrane marker 5'-nucleotidase; 2.6-fold for the lysosomal marker acid phosphatase, and 3-fold for the Golgi marker thiamine pyrophosphatase. No enrichment was observed for mitochondrial or endoplasmic reticulum enzyme markers. Specific and saturable transferrin-binding activity was also detected in the final preparation. Electron microscopy revealed the presence of vesicles and sheets of membranes as well as an occasional Golgi apparatus. The plasma membrane fraction was used to generate monoclonal antibodies. Of 102 wells exhibiting growth, 12 were positive by immunofluorescent staining of frozen sections. Ten of these recognized determinants in epithelial cells, and 2 stained peritubular smooth muscle cells. Most of the epithelial cell-specific antibodies stained brush border alone or in combination with the basolateral plasma membrane. Three antibodies stained the Golgi apparatus. Most antibodies were specific for particular epididymal regions, 3 also recognized determinants in the kidney, and 1 stained residual bodies in the testis.  相似文献   

14.
Kinase(s) in brush border membranes, isolated from rabbit renal proximal tubules, phosphorylated proteins intrinsic to the membrane and exogenous proteins. cAMP stimulated phosphorylation of histone; phosphorylation of protamine was cAMP independent. cAMP-dependent increases in phosphorylation of endogenous membrane protein were small, but highly reproducible. Most of the 32P incorporated into membranes represented phosphorylation of serine residues, with phosphorylthreonine comprising a minor component. cAMP did not alter the electrophoretic pattern of 32P-labeled membrane polypeptides. The small cAMP-dependent phosphorylation of brush border membrane proteins was not due to membrane phosphodiesterase or adenylate cyclase activities. Considerable cAMP was found “endogenously” bound to the membranes as prepared. However, this did not result in preactivation of the kinase since activity was not inhibited by a heat-stable protein inhibitor of cAMP-dependent protein kinases. With intrinsic membrane protein as phosphate acceptor, the relationship between rate of phosphorylation and ATP concentration appeared to follow Michaelis-Menton kinetics. With histone the relationship was complex. cAMP did not affect the apparent Km for histone. One-half maximal stimulation of the rate of histone phosphorylation was obtained with 7 × 10?8m cAMP. The Ka values for dibutyryl cAMP, cIMP, and cGMP were one to two orders of magnitude greater. Treatment of brush border membranes with detergent greatly increased the dependency of histone phosphorylation on cAMP. Phosphorylations of intrinsic membrane protein and histone were nonlinear with time, due in part to the lability of the protein kinase, the hydrolysis of ATP, and minimally to the presence of phosphoprotein phosphatase in the border membrane. The membrane phosphoprotein phosphatase was unaffected by cyclic nucleotides. Protein kinase activity was also found in cytosolic and crude particulate fractions of the renal cortex. Activity was enriched in the brush border membrane relative to that in the crude membrane preparation. The kinase activities in the different loci were distinct both in relative activities toward different substrates and in responsiveness to cAMP.  相似文献   

15.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and gamma-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+1)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5'-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme "marker" for the renal basal-lateral membrane.  相似文献   

16.
Phosphate-dependent glutaminase is associated with the inner membrane of rat renal mitochondria. The orientation of this enzyme was characterized by comparing its sensitivity in isolated mitochondria and in mitoplasts to two membrane impermeable inhibitors. Mitoplasts were prepared by repeated swelling of mitochondria in a hypotonic phosphate solution. This procedure released greater than 70% of the adenylate kinase from the intermembrane space, but less than 10 and 25% of the marker activities characteristic of the inner membrane and matrix compartments, respectively. The addition of 20 microM p-chloromercuriphenylsulfonate (pCMPS) caused a rapid inactivation of the purified glutaminase. In contrast, the glutaminase contained in isolated mitochondria and mitoplasts was only slightly affected by the addition of up to 2 mM pCMPS. Similarly, the activity in mitochondria and mitoplasts was not inhibited by the addition of an excess of inactivating Fab antibodies. However, a similar extent of inactivation occurred when either membrane fraction was incubated with concentrations of octylglucoside greater than 0.35%. Mitochondria were also treated with increasing concentrations of digitonin. At 0.4 mg digitonin/mg protein, all of the adenylate kinase was released but the glutaminase activity was either slightly inhibited or unaffected by the addition of pCMPS or the Fab antibodies, respectively. These studies establish that the glutaminase is localized on the inner surface of the inner membrane. Therefore, mitochondrial catabolism of glutamine must occur only within the matrix compartment.  相似文献   

17.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and γ-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5′-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme “marker” for the renal basal-lateral membrane.  相似文献   

18.
Multiple protein kinase activities were found in the luminal segment of the renal proximal tubule cell plasma membrane (brush border membrane). Membranes were extracted with Lubrol, with no loss in activity, and the extract was chromatographed on diethylaminoethyl cellulose with a salt gradient. With protamine as substrate, activity eluted in two peaks, designated I and IIb, and was cyclic AMP independent. With histone VII-S, one peak, designated IIa, appeared, which eluted slightly ahead of IIb and was cyclic AMP dependent. The three activities eluted in their original patterns following rechromatography. Histone kinase activity in the combined IIa+b fraction was stimulated threefold by cyclic nucleotides (Ka = 0.013 and 0.94 μM for cyclic AMP and cyclic GMP, respectively) by increasing V. Cyclic AMP binding activity eluted with histone kinase activity. Rechromatography of IIa+b on diethylaminoethyl cellulose containing 1 μm cyclic AMP resulted in passage through the column of most of the histone kinase activity (IIa) prior to the salt gradient, but retention of kinase IIb, which again eluted in its original position. Characterization of the separated enzymes revealed that kinase I was highly specific for protamine and totally insensitive to cyclic AMP and a specific protein inhibitor of cyclic AMP-dependent kinases. Kinase IIa was relatively specific for histones and was completely inhibited by the protein inhibitor. Kinase IIb was nonspecific, catalyzing phosphorylation of protamine, casein, histones, and phosvitin in decreasing order of activity, and was insensitive to cyclic AMP and the protein inhibitor. Exposure of intact brush border membranes to elevated temperatures revealed that phosphorylation of intrinsic membrane proteins and protamine was thermolabile, whereas cyclic AMP-dependent histone kinase activity was relatively thermostable. These findings implicate cyclic AMP-independent protamine kinases in the cyclic AMP-independent autophosphorylation of the brush border membrane.  相似文献   

19.
Adenosine triphosphatase (ATPase; EC 3.6.1.3) and 5′-nucleotidase (5′-NTase; EC 3.1.3.5) activities of the isolated brush border membrane of Hymenolepis diminuta have been studied. The pH optimum for ATPase activity is 7.4, and divalent cations are necessary for maximum activity; no Na+-K+ activated ATPase is present in the isolated brush border membrane. ATPase activity is inhibited by molybdate and phosphorylated monosaccharides, but not by N-ethylmaleimide (NEM), p-chloromercuribenzoate (pCMB), or fluoride. The pH optimum for 5′-NTase activity is 9.6–10.2, and divalent cations are necessary for maximum activity. 5′-NTase activity is inhibited by molybdate at pH 9.6 and 7.4, and activated by NEM and pCMB and pH 9.6 and 7.4, respectively; fluoride has no effect on 5′-NTase activity. Solubilization of the brush border membrane fraction in 1% sodium dodecyl sulfate has no inhibitory action on either enzyme activity.  相似文献   

20.
Basal-lateral and brush border membranes from pig kidney cortex were prepared by differential centrifugation followed by free-flow electrophoresis. In each type of membrane, azide-insensitive, low-affinity Ca2+-ATPase and Mg2+-ATPase activities are demonstrated. A comparative study for both membranes further reveals the following analogies between these ATPases: (a) they show maximal activity between pH 8 and 8.5; (b) they exhibit Km values for Ca-ATP or Mg-ATP in the millimolar range and have a comparable low substrate specificity; (c) they are insensitive to 10 microM of vanadate, N,N'-dicyclohexylcarbodiimide, e diethylstilbestrol, quercetin, harmaline and amiloride. The partial inhibition by 1 mM of the various compounds is rather aspecific. In view of these similarities it is concluded that only one enzyme entity is responsible for the activity which is measured in both membrane types. The HCO3-stimulated Mg2+-ATPase activity in pig kidney cortex was also studied. This enzyme, however, is clearly of mitochondrial origin since the HCO3-stimulation coincides with the distribution profile of succinate dehydrogenase, a mitochondrial marker; and since it is inhibited by azide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号