首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
3-Methylindole has been shown in previous work to cause pulmonary edema and emphysema in cattle and goats. In this paper, evidence is presented to show that 3-methylindole induces structural perturbations in bovine erythrocyte membranes. The structural perturbations which were induced as a function of 3-methylindole concentration in the membranes were measured by EPR using the attachment of maleimide spin label to the sulfhydryl groups of membrane proteins and by intercalation of methyl-5- doxylstearate, methyl-12-doxylstearate, and methyl-16-doxylstearate into the lipid region. The EPR spectra of the malemide spin-labeled membrane proteins became more immobilized as the concentration of 3-methyl-indole increased. The order parameter describing the EPR spectra of methyl-5-doxylstearate decreased from 0.69 to 0.55 as the concentration of 3-methylindole increased. The acyl chains in the region of the carbon 5 position were converted to a less ordered structure. The EPR-spectra of methyl-12-doxylstearate was a superposition representing at least three tumbling rates. As the concentration of 3-methylindole increased, the major fraction of the methyl-12-doxylstearate probes experienced an increase in tumbling rate and a smaller fraction is observed a strongly immobilized state. The EPR spectra of methyl-16-doxylstearate were not perceptibly changed in the presence of 3-methylindole. The concentration dependence suggests that 3-methylindole preferentially intercalates into the ordered region of the alkyl chains sampled by the methyl-5-doxylstearate. These results confirm that 3-methylindole induced structural changes at the molecular level.  相似文献   

2.
The structural properties of gamma-irradiated fish red blood cells were studied using a spin labelling method. The gradient increase of lipid fluidity with the increasing gamma radiation doses was indicated by methyl 5-doxylpalmitate and methyl 12-doxylstearate spin labels spectra. In turns, the spectra of maleimide spin label (4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl) and TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl) indicated a modification of the internal proteins and the increased internal viscosity of red blood cells. The results encourage the conclusion that the increase in membrane fluidity may result from theernations in lipid-protein interactions rather than lipid peroxidation.  相似文献   

3.
本文采用自旋标记顺磁共振波谱技术,研究了山茛菪碱对人红细胞膜蛋白和膜脂运动的影响.结果表明:用马来酰亚胺标记的人红细胞膜,加入山茛菪碱后,其顺磁共振波谱中强、弱固定化作用谱的峰值比增大,膜蛋白的运动受到限制.山茛菪碱对红细胞膜脂的作用部位主要在极性头部,并影响膜脂的流动性.本文还对山茛菪碱与红细胞膜作用的可能机制进行了讨论.  相似文献   

4.
The effect of alk(en)ylresorcinol homologs (5-(n-nonadecyl)- and 5-(n-nonadecenyl)resorcinol) on the mobility of 5-doxyl- and 12-doxylstearate spin probes incorporated into DMPC, DMPC-cholesterol and erythrocyte membranes was studied. It was found that both homologs affect the properties of hydrophobic environment of the membranes: (1) In DMPC vesicles both homologs induce an increase in the order parameter of 5-doxylstearate at temperatures of Tc and above. (2) At higher concentrations of both homologs a decrease in mobility of the 12-doxylstearate was also observed. (3) In the presence of cholesterol in the liposome membrane the influence of alk(en)ylresorcinols on the mobility of spin probes was much greater, depending on the cholesterol content and the position of the probe in the bilayer. (4) In natural membranes (erythrocyte ghosts) both alkyl- and alkenylresorcinols induced a decrease of mobility in the region of 12-doxylstearate as well as in the region closer to the polar head groups of lipids (5-doxylstearate).  相似文献   

5.
We have used spin labels and electron paramagnetic resonance (EPR) to study the correlation between the rotational dynamics of protein and lipid in sarcoplasmic reticulum (SR) membranes. A short-chain maleimide spin label was used to monitor the submillisecond rotational mobility of the Ca-ATPase enzyme (using saturation transfer EPR); a free fatty acid spin label was used to monitor the submicrosecond rotational mobility of the bulk lipid hydrocarbon chains (using conventional EPR); and a fatty acid spin label derivative (long-chain maleimide) attached to the enzyme was used to monitor the mobility of hydrocarbon chains adjacent to the protein (i.e., boundary lipid). In the native SR membranes, the protein was highly mobile (effective correlation time 50 microseconds). The spectra of the hydrocarbon probes both contained at least two components. For the unattached probe, the major component indicated nearly as much mobility as in the absence of protein (effective rotational correlation time 3 ns), while a minor component, corresponding to 25-30% of the total signal, indicated strong immobilization (effective correlation time greater than or equal to 10 ns). For the attached hydrocarbon probe, the major component (approximately 70% of the total) was strongly immobilized, and the mobile component was less mobile than that of the unattached probe. When the lipid-to-protein ratio was reduced 55% by treatment with deoxycholate, protein mobility decreased considerably, suggesting protein aggregation. A concomitant increase was observed in the fraction of immobilized spin labels for both the free and attached hydrocarbon probes. The observed hydrocarbon immobilization probably arises in part from immobilization at the protein-lipid boundary, but protein-protein interactions that trap hydrocarbon chains may also contribute. When protein aggregation was induced by glutaraldehyde crosslinking, submillisecond protein mobility was eliminated, but there was no effect on either hydrocarbon probe. Thus protein aggregation does not necessarily cause hydrocarbon chain immobilization.  相似文献   

6.
A maleimide spin label (N-(1-oxyl-2,2,5,5-tetramethylpyrrolidinyl)-maleimide) was reacted with oxyhemoglobin-free cell stromata of normal and sickle cells. The EPR spectrum of spin-labeled red cell membranes showed that the spin labels are attached to at least two different binding sites. There was a major signal, A, which characterized a strongly immobilized environment and a minor signal, B, which characterized a weakly immobilized environment. Quantitative EPR measurements using equal amounts of Hb AA and Hb SS red blood cells demonstrated that Hb SS red cell membranes had an approximately four times higher EPR signal intensity than Hb AA red cell membranes ((7.98 +/- 1.14 . 10(5) and (2.2 +/- 1.2) . 10(5) spin labels/cell, respectively). Moreover, the ratio of signal intensities A and B are different in these cells. Comparative spectrophotometric studies of membrane-associated denatured hemoglobins of Hb AA and Hb SS red cell membranes suggested that the EPR signal A is derived from spin labels attached to membrane-associated denatured hemoglobin, while signal B is mainly from spin labels attached to membranes. The combination of EPR spectrum of Hb AA membranes pretreated with N-ethylmaleimide and that of spin-labeled precipitated hemoglobin further strengthened this conclusion.  相似文献   

7.
The physical state of mitochondrial membranes has been investigated by means of stearic acid spin labels and of a maleimide spin label covalently bound to protein sulfhydryl groups. Stearic acid spin labels 5-NS and 16-NS show that n-butanol enhances the lipid fluidity of mitochondrial membranes in the whole temperature range between 4 and 37 degrees C; the effects in the hydrophobic membrane core, probed by 16-NS, are already apparent at 10 mM butanol. In liposomes formed of mitochondrial phospholipids, a fluidizing effect appears only at much higher concentration. Such results are compatible with the idea that butanol destabilizes lipid-protein interactions. On the other hand, the ratio between weakly and strongly immobilized SH groups probed by maleimide spin label is only slightly affected in the temperature range of 4-37 degrees C by addition of high concentrations of n-butanol, indicating that the environments probed are stable to agents inducing fluidity changes in the lipids. There are, however, indications that the environment probed by maleimide is affected by lipids, since the spin label, when bound to lipid-depleted mitochondria, becomes more immobilized, reconstitution of such lipid-depleted membranes with phospholipids restores the original spectra.  相似文献   

8.
Cholesterol (chol)–lipid interactions are thought to play an intrinsic role in determining lateral organization within cellular membranes. Steric compatibility of the rigid steroid moiety for ordered saturated chains contributes to the high affinity that holds chol and sphingomyelin together in lipid rafts whereas, conversely, poor affinity of the sterol for highly disordered polyunsaturated fatty acids (PUFAs) is hypothesized to drive the formation of PUFA-containing phospholipid domains depleted in chol. Here, we describe a novel method using electron paramagnetic resonance (EPR) to measure the relative affinity of chol for different phospholipids. We monitor the partitioning of 3β-doxyl-5α-cholestane (chlstn), a spin-labeled analog of chol, between large unilamellar vesicles (LUVs) and cyclodextrin (mβCD) through analysis of EPR spectra. Because the shape of the EPR spectrum for chlstn is sensitive to the very different tumbling rates of the two environments, the ratio of the population of chlstn in LUVs and mβCD can be determined directly from spectra. Partition coefficients ( $ K_{\text{B}}^{\text{A}} $ K B A ) between lipids derived from our results for chlstn agree with values obtained for chol and confirm that decreased affinity for the sterol accompanies increasing acyl chain unsaturation. The virtue of this EPR method is that it provides a measure of chol binding that is quick, employs a commercially available probe and avoids the necessity for physical separation of LUVs and mβCD.  相似文献   

9.
1. The hydrazine mustard spin label (HMSL), recently synthesized in our laboratory (Raikova, 1977) was used for spin-labelling of DNA. 2. It alkylates both double- and single-stranded DNAs. 3. The reaction of HMSL with DNA was studied with respect to the kinetics of alkylation, dependence on salt concentration and base specificity. 4. It was found that HMSL is a base-specific reagent, alkylating preferentially guanine. According to their ability to bind HMSL, the four deoxyribonucleotides are ordered in the following way: G greater than A greater than C greater than T. 5. The EPR spectra obtained strongly depended on the secondary structure of the spin-labelled DNA: unlike the immobilized spectra of the double-stranded DNAs (2AZZ = 44.8G), the EPR spectra of single-stranded DNAs were non-immobilized (2AZZ = 32.8 G). 6. When sheared double-stranded DNA was spin-labelled, the parameters of the EPR spectrum depended also on the GC content of DNA.  相似文献   

10.
A maleimide spin label (N-(1-oxyl-2,2,5,5-tetramethylpyrrolidinyl)-maleimide) was reacted with oxyhemoglobin-free cell stromata of normal and sickle cells. The EPR spectrum of spin-labeled red cell membranes showed that the spin labels are attached to at least two different binding sites. There was a major signal, A, which characterized a strongly immobilized environment and a minor signal, B, which characterized a weakly immobilized environment. Quantitative EPR measurements using equal amounts of Hb AA and Hb SS red blood cells demonstrated that Hb SS red cell membranes had an approximately four times higher EPR signal intensity than Hb AA red cell membranes ((7.98 ± 1.14) · 105 and (2.2 ± 1.2) · 105 spin labels/cell, respectively). Moreover, the ratio of signal intensities A and B are different in these cells. Comparative spectrophotometric studies of membrane-associated denatured hemoglobins of Hb AA and Hb SS red cell membranes suggested that the EPR signal A is derived from spin labels attached to membrane-associated denatured hemoglobin, while signal B is mainly from spin labels attached to membrane-associated denatured hemoglobin, while signal B is mainly from spin labels attached to membranes. The combination of EPR spectrum of Hb AA membranes pretreated with N-ethyl-maleimide and that of spin-labeled precipitated hemoglobin further strengthened this conclusion.  相似文献   

11.
The spin labels, 5-doxylstearate, 12-doxylstearate, 16-doxylstearate and 1-oxyl-2,2,6,6-tetramethyl-4-dodecylphosphopiperidine, have been incorporated into dodecylphosphocholine micelles and mixed dodecylphosphocholine glucagon micelles. The EPR spectral parameters for the different spin labels and the 1H- and 13C-NMR relaxation rates for nuclei of the detergent molecules indicated that inclusion of up to one spin label molecule per micelle had little influence on the spatial organization of the micelles. Furthermore, the location and environment of the spin labels in the dodecylphosphocholine micelles were not noticeably affected by the addition of glucagon and the 1H-NMR spectra observed for glucagon in mixed spin label/deuterated dodecylphosphocholine/glucagon micelles showed that the different spin labels had essentially no effect on the conformation of glucagon. Approximate spatial locations within the micelle for the nitroxide moieties of the different spin labels were determined from the NMR relaxation rates observed for different nuclei of dodecylphosphocholine. On this basis, the line broadening of individually assigned glucagon 1H-NMR lines by the different spin labels was used to determine the approximate orientation of the polypeptide chain with respect to the micelle surface. Overall, the data indicate that the glucagon backbone runs roughly parallel to the micelle surface, with the depth of immersion adjusted so that polar and apolar side chains can be oriented towards the surface or interior of the micelle, respectively.  相似文献   

12.
Summary The effect of gamma radiation on red blood cells have been examined using a spin labeling method. For this purpose two spin labels were used to monitor membrane fluidity: methyl 5-doxylpalmitate (Met 5-DP) and methyl 12-doxylstearate (Met 12-DS). The irradiation of red cells with the doses of 200 and 500 Gy caused decrease of microviscosity in certain regions of lipid bilayer (as indicated by Met 5-DP and Met 12-DS spectra) but did not affect lipid order parameter. The behavior of two other spin labels, maleimide(4-malei-mido-2,2,6,6-tetramethylpiperidine-1-oxyl) and TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl) indicated:1) conformational changes of membrane proteins,2) modification of cell internal peptides and proteins,3) decreased internal viscosity of red blood cells.  相似文献   

13.
The interactions of chromium(VI) with the plasma membranes of chromium-sensitive (chr-51S) and chromium-tolerant (chr1-66T) mutants and their parental strain (6chr(+)) of a Schizosaccharomyces pombe strain were studied by electron paramagnetic resonance (EPR) spectroscopy. 5-doxylstearic acid (5-SASL) and 3-doxylbutyric acid (HO-185) spin probes were used to label the membranes. The order parameter S from the EPR spectra was calculated at different temperatures (0-25 degrees C) in order to characterize the internal dynamics of the membranes. In control experiments, both mutants exhibited differences in structural transitions in the both 5-SASL- and the HO-185-labeled membranes in comparison with their parental strain, suggesting differences in the membrane composition and/or rotational dynamics of these mutants. Addition of K(2)Cr(2)O(7) (225 microM) induced small decreases in the phase transition temperatures of the 5-SASL-labeled membranes of the parental and chromium-sensitive strains. More pronounced effects of the chromium compound on the HO-185-labeled membranes were detected as evidence that the membrane perturbations are mostly localized in the environment of the lipid-water interface.  相似文献   

14.
erocyanine 540 (MC540) is a membrane-directed photosensitizing dye with antileukemic and antiviral properties. In this study, biophysical and biochemical techniques have been used to examine MC540-sensitized photooxidative damage in the lipid and protein compartments of a test membrane, the human erythrocyte ghost. Irradiation of MC540-sensitized ghosts with white light resulted in oxidative damage to proteins, as manifested by (i) loss of sulfhydryl groups; (ii) intermolecular cross-linking of major polypeptides; and (iii) loss of Mg(2+)-ATPase and Na+,K(+)-ATPase activities. Photooxidation also produced a rapid and progressive increase in general protein motion, as measured by electron paramagnetic resonance spectrometry (EPR) with the sulfhydryl spin label MAL-6. In addition to these effects, ghosts exposed to MC540 and light underwent lipid peroxidation. EPR with two lipophilic spin probes, 5-doxylstearate and 16-doxylstearate, showed that lipid peroxidation is accompanied by a progressive decrease in bilayer fluidity (motional freedom). At a given dye concentration, structural perturbations of proteins were detected at much lower light fluences than those of lipids. When photoreactions were carried out in the presence of ascorbate and iron, there was a strong stimulation of lipid peroxidation (attributed to free radical chain reactions), with a concomitant greater decrease in lipid mobility. Thus, the deleterious effects of photoperoxidation on lipid structure and motional freedom were greatly exacerbated by ascorbate and iron. Membrane damage similar to that described here may play a role in the phototherapeutic activity of MC540.  相似文献   

15.
Freely diffusable lipid spin labels in bovine rod outer segment disc membranes display an apparent two-component ESR spectrum. One component is markedly more immobilized than that found in fluid lipid bilayers, and is attributed to lipid interacting directly with rhodopsin. For the 14-doxyl stearic acid spin label this more immobilized component has an outer splitting of 59 G at 0 degrees C, with a considerable temperature dependence, the effective outer splitting decreasing to 54 G at 24 degrees C. Spin label lipid chains covalently attached to rhodopsin can also display a two-component spectrum in rod outer segment membranes. In unbleached, non-delipidated membranes the 16-doxyl stearoyl maleimide label shows an immobilized component which has an outer splitting of 59 G at 0 degrees C and a considerable temperature dependence. This component which is not resolved at high temperatures (24--35 degrees C), is attributed to the lipid chains interacting directly with the monomeric protein, as with the diffusable labels. In contrast, in rod outer segment membranes which have been either delipidated or extensively bleached, a strongly immobilized component is observed with the 16-doxyl maleimide label at all temperatures. This immobilized component has an outer splitting of 62--64 G at 0 degrees C, with very little temperature dependence (61--62 G at 35 degrees C), and is attributed to protein aggregation.  相似文献   

16.
A nitroxide spin-labeled analogue of thymidine (1a), in which the methyl group is replaced by an acetylene-tethered nitroxide, was evaluated as a probe for structural and dynamics studies of sequence specifically spin-labeled DNA. Residue 1a was incorporated into synthetic deoxyoligonucleotides by using automated phosphite triester methods. 1H NMR, CD, and thermal denaturation studies indicate that 1a (T*) does not significantly alter the structure of 5'-d(CGCGAATT*CGCG) from that of the native dodecamer. EPR studies on monomer, single-stranded, and duplexed DNA show that 1a readily distinguishes environments of different rigidity. Comparison of the general line-shape features of the observed EPR spectra of several small duplexes (12-mer, 24-mer) with simulated EPR spectra assuming isotropic motion suggests that probe 1a monitors global tumbling of small duplexes. Increasing the length of the DNA oligomers results in significant deviation from isotropic motion, with line-shape features similar to those of calculated spectra of objects with isotropic rotational correlation times of 20-100 ns. EPR spectra of a spin-labeled GT mismatch and a T bulge in long DNAs are distinct from those of spin-labeled Watson-Crick paired DNAs, further demonstrating the value of EPR as a tool in the evaluation of local dynamic and structural features in macromolecules.  相似文献   

17.
The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic acid spin labels (n-SASL) and their methylated derivatives (n-MeSASL), labelled at different positions of their doxyl group (n=5, 12 and 16), were used to probe the ordering and molecular mobility in different regions of the lipid moiety of axis cell membranes. The ordering and local polarity in relation to the position of the doxyl group along the hydrocarbon chain of SASL, determined over the temperature range from -50 to +20 degrees C, are typical for biological and model lipid membranes, but essentially differ from those in seed oil droplets. Positional profiles for ST-EPR spectra show that the flexibility profile along the lipid hydrocarbon chain does exist even at low temperatures, when most of the membrane lipids are in solid state (gel phase). The ordering of the SASL nitroxide radical in the membrane surface region is essentially higher than that in the depth of the membrane. The doxyl groups of MeSASLs are less ordered (even at low temperatures) than those of the corresponding SASLs, indicating that the MeSASLs are located in the bulk of membrane lipids rather than in the protein boundary lipids. The analysis of the profiles of EPR and ST-EPR spectral parameters allows us to conclude that the vast majority of SASL and MeSASL molecules accumulated in embryo axes is located in the cell membranes rather than in the interior of the oil bodies. The preferential partitioning of the doxyl stearates into membranes demonstrates the potential of the EPR spin-labelling technique for the in situ study of membrane behavior in seeds of different hydration levels.  相似文献   

18.
Isas JM  Kim YE  Jao CC  Hegde PB  Haigler HT  Langen R 《Biochemistry》2005,44(50):16435-16444
Annexins are a family of soluble proteins that can undergo reversible Ca(2+)-dependent interaction with the interfacial region of phospholipid membranes. The helical hairpins on the convex face of the crystal structure of soluble annexins are proposed to mediate binding to membranes, but the mechanism is not defined. For this study, we used a site-directed spin labeling (SDSL) experimental approach to investigate Ca(2+) and membrane-induced structural and dynamic changes that occurred in the helical hairpins encompassing three of the four D and E helices of annexin B12. Electron paramagnetic resonance (EPR) parameters were analyzed for the soluble and Ca(2+)-dependent membrane-bound states of the following nitroxide scans of annexin B12: a continuous 24-residue scan of the D and E helices in the third repeat (residues 219-242) and short scans encompassing the D-E loop regions of the first repeat (residues 68-74) and the fourth repeat (300-305). EPR mobility and accessibility parameters of most sites were similar when the protein was in solution or in the membrane-bound state, and both sets of data were consistent with the crystal structure of the protein. However, membrane-induced changes in mobility and accessibility were observed in all three loop regions, with the most dramatic changes noted at sites corresponding to the highly conserved serine and glycine residues in the loops. EPR accessibility parameters clearly established that nitroxide side chains placed at these sites made direct contact with the bilayer. EPR mobility parameters showed that these sites were very mobile in solution, but immobilized on the EPR time scale in the membrane-bound state. Since the headgroup regions of bilayer phospholipids are relatively mobile in the absence of annexins, Ca(2+)-dependent binding of annexin B12 appears to form a complex in which the mobility of the D-E loop region of the protein and the headgroup region of the phospholipid are highly constrained. Possible biological consequences of annexin-induced restriction of membrane mobility are discussed.  相似文献   

19.
During cellular desiccation, reduction in volume can in principle cause amphiphilic compounds to partition from the cytoplasm into membranes, with structural perturbance as the result. Here, we studied the effect of partitioning of endogenous amphiphiles on membrane surface dynamics in desiccation-tolerant and -intolerant, higher and lower plant systems, using electron paramagnetic resonance (EPR) spin probe techniques. Labeling cells with the amphiphilic spin probe perdeuterated TEMPONE (PDT) enabled partitioning into the various phases to be followed. During drying, PDT molecules preferentially partitioned from the aqueous cytoplasm into the membrane surface and, at advanced stages of water loss, also into oil bodies. There was no specific partition behavior that could be correlated with lower/higher plants or with desiccation-tolerance. In vivo labeling with 5-doxylstearate (5-DS) enabled membrane surface fluidity to be characterized. In hydrated plants, the 5-DS spectra contained an immobile and a fluid component. The characteristics of the immobile component could not be specifically correlated with either lower or higher plants, or with desiccation tolerance. The relative contribution of the fluid component to the 5-DS spectra was higher in lower plants than in higher plants, but considerably decreased with drying in all desiccation-tolerant organisms. In contrast, the proportion of the fluid component in desiccation-sensitive wheat seedling root was higher than that in desiccation-tolerant wheat axis and considerably increased at the onset of water loss. We suggest that partitioning of amphipaths fluidize the membrane surface, but that in desiccation-tolerant systems the membranes are protected from excessive fluidization.  相似文献   

20.
The spin labels, 5-doxylstearate, 12-doxylstearate, 16-doxylstearate and 1-oxyl-2,2,6,6-tetramethyl-4-dodecylphospiperidine, have been incorporated into dodecylphospocholine micelles and mixed dodecylphosphocholine/ glucagon micelles. The EPR spectral parameters for the different spin labels and the 1H- and 13C-NMR relaxation rates for nuclei of the detergent molecules indicated that inclusion of up to one spin label molecule per micelle had little influence on the spatial organization of the micelles. Furthermore, the location and environment of the spin labels in the dodecylphosphocholine micelles were not noticeably affected by the addition of glucagon and the 1H-NMR spectra observed for glucagon in mixed spin label/deuterated dodecylphosphocholine/glucagon micelles showed that the different spin labels had essentially no effect on the conformation of glucagon. Approximate spatial locations within the micelle for the nitroxide moieties of the different spin labels were determined from the NMR relaxation rates observed for different nuclei of dodecylphosphocholine. On this basis, the line broadening of individually assigned glucagon 1H-NMR lines by the different spin labels was used to determine the approximate orientation of the polypeptide chain with respect to the micelle surface. Overall, the data indicate that the glucagon backbone runs roughly parallel to the micelle surface, with the depth of immersion adjusted so that polar and apolar side chains can be oriented towards the surface or interior of the micelle, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号