首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CAP superfamily member, CRISPLD2, has previously been shown to be associated with nonsyndromic cleft lip and palate (NSCLP) in human populations and to be essential for normal craniofacial development in the zebrafish. Additionally, in rodent models, CRISPLD2 has been shown to play a role in normal lung and kidney development. However, the specific role of CRISPLD2 during these developmental processes has yet to be determined. In this study, it was demonstrated that Crispld2 protein localizes to the orofacial region of the zebrafish embryo and knockdown of crispld2 resulted in abnormal migration of neural crest cells (NCCs) during both early and late time points. An increase in cell death after crispld2 knockdown as well as an increase in apoptotic marker genes was also shown. This data suggests that Crispld2 modulates the migration, differentiation, and/or survival of NCCs during early craniofacial development. These results indicate an important role for Crispld2 in NCC migration during craniofacial development and suggests involvement of Crispld2 in cell viability during formation of the orofacies. genesis 53:660–667, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
BACKGROUND: Nonsyndromic cleft lip and/or cleft palate (NSCLP) are common congenital anomalies in humans, the etiologies of which are complex and associated with both genetic and environmental factors. Previous data suggested single nucleotide polymorphisms (SNPs) of rs1546124, rs4783099, and rs16974880 of the CRISPLD2 gene were associated with an increased risk of NSCLP; however, subsequent studies have yielded conflicting results. This study aims to evaluate the associations of the aforementioned polymorphisms with NSCLP in a Northwestern Chinese population. METHODS: Three CRISPLD2 SNPs were genotyped in a case‐control study (n = 907), including 444 NSCLP patients and 463 healthy individuals, using polymerase chain reaction–denaturing high‐performance liquid chromatography (PCR‐DHPLC). RESULTS: The genotype and allele frequencies of rs1546124 (odds ratio [OR], 2.30; 95% confidence interval [CI], 1.58–3.34; p = 1 × 10−5) and rs4783099 (OR, 0.73; 95% CI, 0.54–1.00; p = 0.05) were different in NSCLP patients compared with controls. Furthermore, the CC genotype at rs1546124 was associated with increased risk for cleft lip with or without cleft palate (CL/P; OR, 2.11; 95% CI, 1.41–3.15; pcorrect = 1.5 × 10−4) and for cleft palate only (CPO; OR, 2.93; 95% CI, 1.69–5.07; pcorrect = 5.4 × 10−4), whereas the T allele of rs4783099 was associated with decreased risk for CPO. Further gender stratification showed that the statistical association of these two loci is mainly in the male patients, and not in female patients. CONCLUSION: Our results suggest that the CRISPLD2 gene contributes to the etiology of NSCLP in the Northwestern Chinese population. SNP rs1546124 is significantly related to NSCLP, associated with both CL/P and CPO groups, and SNP rs4783099 is significantly associated with CPO. Birth Defects Research (Part A) 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
4.
5.
Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N‐cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin‐17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin‐17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin‐17 specific antisense morpholino oligonucleotides (MOs). Protocadherin‐17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin‐17 mRNA. Injection of a vivo‐protocadherin‐17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin‐17 plays an important role in the normal formation of the zebrafish retina. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

6.
Nodal‐signaling is required for specification of mesoderm, endoderm, establishing left–right asymmetry, and craniofacial development. Wdr68 is a WD40‐repeat domain‐containing protein recently shown to be required for endothelin‐1 (edn1) expression and subsequent lower jaw development. Previous reports detected the Wdr68 protein in multiprotein complexes containing mammalian members of the dual‐specificity tyrosine‐regulated kinase (dyrk) family. Here we describe the characterization of the zebrafish dyrk1b homolog. We report the detection of a physical interaction between Dyrk1b and Wdr68. We also found perturbations of nodal signaling in dyrk1b antisense morpholino knockdown (dyrk1b‐MO) animals. Specifically, we found reduced expression of lft1 and lft2 (lft1/2) during gastrulation and a near complete loss of the later asymmetric lft1/2 expression domains. Although wdr68‐MO animals did not display lft1/2 expression defects during gastrulation, they displayed a near complete loss of the later asymmetric lft1/2 expression domains. While expression of ndr1 was not substantially effected during gastrulation, ndr2 expression was moderately reduced in dyrk1b‐MO animals. Analysis of additional downstream components of the nodal signaling pathway in dyrk1b‐MO animals revealed modestly expanded expression of the dorsal axial mesoderm marker gsc while the pan‐mesodermal marker bik was largely unaffected. The endodermal markers cas and sox17 were also moderately reduced in dyrk1b‐MO animals. Notably, and similar to defects previously reported for wdr68 mutant animals, we also found reduced expression of the pharyngeal pouch marker edn1 in dyrk1b‐MO animals. Taken together, these data reveal a role for dyrk1b in endoderm formation and craniofacial patterning in the zebrafish. genesis 48:20–30, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
ADAM (a d isintegrin a nd m etalloprotease) constitutes a family of multi‐domain proteins that are involved in development, homeostasis, and disease. ADAM12 plays important roles in myogenesis and adipogenesis in mice; however, the precise physiological mechanisms are not known, and the function of this gene in other vertebrates has not been examined. In this study, we used a simple model vertebrate, the zebrafish, to investigate the functions of ADAM12 during development. Zebrafish adam12 is conserved with those of mammals in the synteny and the amino‐acid sequence. We examined adam12 expression in zebrafish embryos by whole mount in situ hybridization and the promoter activity of the adam12 upstream sequence. We found that adam12 is strongly expressed in the cardiovascular system, erythroid progenitors, brain, and jaw cartilage during zebrafish development, and adam12‐knockout zebrafish exhibited reduced body size in the juvenile stage without apparent morphological defects. Taken together, these results suggest that adam12 plays a significant role in the regulation of body growth during juvenile stage in zebrafish, although the precise molecular mechanisms await further study.  相似文献   

8.
Non-syndromic cleft lip with or without cleft palate (NSCLP) is a common craniofacial malformation. Irregular folate metabolism plays a significant role in the etiopathology of NSCLP. In this study, we aim to examine the association of the maternal and cleft child methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms (C677 T and A1298C) with nonsyndromic cleft lip with or without cleft palate (NSCLP) by carefully evaluating established studies. The meta-analysis includes 39 studies that focused on MTHFR C677T and A1298C polymorphisms in cleft children or cleft children’s mothers. All statistical data underwent random or fixed effects model with an odds ratio and 95% confidence intervals as effect measures and was preformed using a web tool MetaGenyo. Statistical analyses showed that the MTHFR C677T is significantly associated with the increased risk of NSCLP in children but not in the mothers. In contrast to this, there is no evidence for association between MTHFR A1298C and NSCLP risk in both children and the mothers. Furthermore, there is no evidence for publication bias for both MTHFR C677T and A1298C polymorphisms in cleft children as well as the mothers of cleft children. In conclusion, we determined that there is a strong association between the MTHFR C677 T polymorphism and NSCLP.  相似文献   

9.
10.
Cranial neural crest (CNC) is a multipotent migratory cell population that gives rise to most of the craniofacial bones. An intricate network mediates CNC formation, epithelial-mesenchymal transition, migration along distinct paths, and differentiation. Errors in these processes lead to craniofacial abnormalities, including cleft lip and palate. Clefts are the most common congenital craniofacial defects. Patients have complications with feeding, speech, hearing, and dental and psychological development. Affected by both genetic predisposition and environmental factors, the complex etiology of clefts remains largely unknown. Here we show that Fas-associated factor-1 (FAF1) is disrupted and that its expression is decreased in a Pierre Robin family with an inherited translocation. Furthermore, the locus is strongly associated with cleft palate and shows an increased relative risk. Expression studies show that faf1 is highly expressed in zebrafish cartilages during embryogenesis. Knockdown of zebrafish faf1 leads to pharyngeal cartilage defects and jaw abnormality as a result of a failure of CNC to differentiate into and express cartilage-specific markers, such as sox9a and col2a1. Administration of faf1 mRNA rescues this phenotype. Our findings therefore identify FAF1 as a regulator of CNC differentiation and show that it predisposes humans to cleft palate and is necessary for lower jaw development in zebrafish.  相似文献   

11.
Modularity is a key mechanism bridging development and evolution and is fundamental to evolvability. Herein, we investigate modularity of the Vertebrate jaw with the aim of understanding mechanisms of its morphological evolution. Conservation of the basic structural bauplan of Vertebrate jaws led to a Hinge and Caps model, in which polarity in the patterning system of developing jaws predicts modularity. We have tested the hypothesis that the Satb2+ cell population delineates a developmental module within the mandibular jaw. Satb2 is expressed in the mesenchyme of the jaw primordia that gives rise to distal elements of both the upper and lower jaws. Loss of Satb2 specifically affects structural elements of the distal (incisor) domain, reflecting the integration of these elements as well as their independence from other mandibular domains. Reducing Satb2 dosage leads to an increase in variation in mandibular length, providing insight into the developmental potential to generate variation. Inter‐taxa comparisons reveal that the Satb2 domain is conserved within gnathostomes. We complement previous loss of function studies in mice with gene knock‐down experiments in Xenopus, providing evidence for functional conservation of Satb2 in regulating size. Finally, we present evidence that the relative size of the amniote mandibular Satb2+ domain varies in relation to epithelial Fgf8 expression, suggesting a mechanism for evolutionary change in this domain. Taken together, our data support the Hinge and Caps model and provide evidence that Satb2 regulates coordinated distal jaw modules that are subject to evolutionary modification by signals emanating from the Hinge.  相似文献   

12.
13.
Angiogenesis plays an important role in the development of neoplastic diseases such as cancer. Resveratrol and its derivatives exert antiangiogenic effects, but the mechanisms of their actions remain unclear. The aim of this study was to evaluate the antiangiogenic activity of resveratrol and its derivative trans‐3,5,4′‐trimethoxystilbene in vitro using human umbilical vein endothelial cells (HUVECs) and in vivo using transgenic zebrafish, and to clarify their mechanisms of action in zebrafish by gene expression analysis of the vascular endothelial growth factor (VEGF) receptor (VEGFR2/KDR) and cell‐cycle analysis. trans‐3,5,4′‐Trimethoxystilbene showed significantly more potent antiangiogenic activity than that of resveratrol in both assays. In zebrafish, trans‐3,5,4′‐trimethoxystilbene caused intersegmental vessel regression and downregulated VEGFR2 mRNA expression. Trans‐3,5,4′‐trimethoxystilbene also induced G2/M cell‐cycle arrest, most specifically in endothelial cells of zebrafish embryos. We propose that the antiangiogenic and vascular‐targeting activities of trans‐3,5,4′‐trimethoxystilbene result from the downregulation of VEGFR2 expression and cell‐cycle arrest at G2/M phase. J. Cell. Biochem. 109: 339–346, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The typical main products of chlorophyll (Chl) breakdown in higher plants are non‐fluorescent, colorless phyllobilins, named phylloleucobilins. These long elusive Chl‐catabolites are linear tetrapyrroles, whose structure elucidation has required thorough spectroscopic analyses. Interestingly, in recent LC/MS studies of leaf extracts, isomeric forms of phylloleucobilins were detected. The existence of isomeric phyllobilins may suggest incomplete stereo‐selectivity of catabolic processes, or isomerization processes in plant cells or in the analytes. Here we report a study with the phylloleucobilin NCC‐1, a basic Chl‐catabolite in extracts of leaves and fruit. NCC‐1 and its main isomerization product in aqueous solution were identified as 82‐epimers. Formation of 82‐epi‐NCC‐1 from NCC‐1 implies an unstable enol(ate)‐intermediate, which reverts to NCC‐1 or converts to 82‐epi‐NCC‐1. Such reversible epimerization reactions are a non‐biological in vitro feature of typical phylloleucobilins, and probably also take place in vivo.  相似文献   

15.
The tilapia (Oreochromis mossambicus) is a euryhaline fish exhibiting adaptive changes in cell size, phenotype, and ionoregulatory functions upon salinity challenge. Na+/Cl? cotransporter (NCC) and Na+/K+/2Cl? cotransporter (NKCC) are localized in the apical and basolateral membranes of mitochondria‐rich (MR) cells of the gills. These cells are responsible for chloride absorption (NCC) and secretion (NKCC), respectively, thus, the switch of gill NCC and NKCC expression is a crucial regulatory mechanism for salinity adaptation in tilapia. However, little is known about the interaction of cytoskeleton and these adaptive changes. In this study, we examined the time‐course of changes in the localization of NKCC/NCC in the gills of tilapia transferred from fresh water (FW) to brackish water (20‰) and from seawater (SW; 35‰) to FW. The results showed that basolateral NKCC disappeared and NCC was expressed in the apical membrane of MR cells. To further clarify the process of these adaptive changes, colchicine, a specific inhibitor of microtubule‐dependent cellular regulating processes was used. SW‐acclimated tilapia were transferred to SW, FW, and FW with colchicine (colchicine‐FW) for 96 h. Compared with the FW‐treatment group, in the MR cells of colchicine‐FW‐treatment group, (1) the average size was significantly larger, (2) only wavy‐convex‐subtype apical surfaces were found, and (3) the basolateral (cytoplasmic) NKCC signals were still exhibited. Taken together, our results suggest that changes in size, phenotype, as well as the expression of NCC and NKCC cotransporters of MR cells in the tilapia are microtubule‐dependent. J. Morphol. 277:1113–1122, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
17.
In 2001, with‐no‐lysine (WNK) kinases were identified as the genes responsible for the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases participate in a signaling cascade with oxidative stress‐responsive gene 1 (OSR1), Ste20‐related proline‐alanine‐rich kinase (SPAK), and thiazide‐sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK–OSR1/SPAK–NCC signaling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK kinase regulation by dietary and hormonal factors and by PHAII‐causing mutations remain poorly understood. In 2012, two additional genes responsible for PHAII, Kelch‐like 3 (KLHL3) and Cullin3, were identified. At the time of their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on previously unknown mechanisms of WNK kinase regulation.  相似文献   

18.
The zebrafish maxillary barbel is an integumentary organ containing skin, glands, pigment cells, taste buds, nerves, and endothelial vessels. The maxillary barbel can regenerate (LeClair & Topczewski 2010); however, little is known about its molecular regulation. We have studied fibroblast growth factor (FGF) pathway molecules during barbel regeneration, comparing this system to a well‐known regenerating appendage, the zebrafish caudal fin. Multiple FGF ligands (fgf20a, fgf24), receptors (fgfr1‐4) and downstream targets (pea3, il17d) are expressed in normal and regenerating barbel tissue, confirming FGF activation. To test if specific FGF pathways were required for barbel regeneration, we performed simultaneous barbel and caudal fin amputations in two temperature‐dependent zebrafish lines. Zebrafish homozygous for a point mutation in fgf20a, a factor essential for caudal fin blastema formation, regrew maxillary barbels normally, indicating that the requirement for this ligand is appendage‐specific. Global overexpression of a dominant negative FGF receptor, Tg(hsp70l:dn‐fgfr1:EGFP)pd1 completely blocked fin outgrowth but only partially inhibited barbel outgrowth, suggesting reduced requirements for FGFs in barbel tissue. Maxillary barbels expressing dn‐fgfr1 regenerated peripheral nerves, dermal connective tissue, endothelial tubes, and a glandular epithelium; in contrast to a recent report in which dn‐fgfr1 overexpression blocks pharyngeal taste bud formation in zebrafish larvae (Kapsimali et al. 2011), we observed robust formation of calretinin‐positive tastebuds. These are the first experiments to explore the molecular mechanisms of maxillary barbel regeneration. Our results suggest heterogeneous requirements for FGF signaling in the regeneration of different zebrafish appendages (caudal fin versus maxillary barbel) and taste buds of different embryonic origin (pharyngeal endoderm versus barbel ectoderm).  相似文献   

19.
Zebrafish have the ability to regenerate skeletal structures, including the fin, skull roof, and jaw. Although fin regeneration proceeds by epimorphic regeneration, it remains unclear whether this process is involved in other skeletal regeneration in zebrafish. Initially in epimorphic regeneration, the wound epidermis covers the wound surface. Subsequently, the blastema, an undifferentiated mesenchymal mass, forms beneath the epidermis. In the present study, we re-examined the regeneration of the zebrafish lower jaw in detail, and investigated whether epimorphic regeneration is involved in this process. We performed amputation of the lower jaw at two different positions; the proximal level (presence of Meckel's cartilage) and the distal level (absence of Meckel's cartilage). In both manipulations, a blastema-like cellular mass was initially formed. Subsequently, cartilaginous aggregates were formed in this mass. In the proximal amputation, the cartilaginous aggregates were then fused with Meckel's cartilage and remained as a skeletal component of the regenerated jaw, whereas in the distal amputation, the cartilaginous aggregates disappeared as regeneration progressed. Two molecules that were observed during epimorphic regeneration, Laminin and msxb, were expressed in the regenerating lower jaw, although the domain of msxb expression was out of the main plain of the aggregate formation. Administration of an inhibitor of Wnt/β-catenin signaling, a pathway associated with epimorphic regeneration, showed few effects on lower jaw regeneration. Our finding suggests that skeletal regeneration of the lower jaw mainly progresses through tissue regeneration that is dependent on the position in the jaw, and epimorphic regeneration plays an adjunctive role in this regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号