首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
重金属镉(Cd)在植物体内的转运途径及其调控机制   总被引:19,自引:0,他引:19  
王晓娟  王文斌  杨龙  金樑  宋瑜  姜少俊  秦兰兰 《生态学报》2015,35(23):7921-7929
重金属镉(Cd)的毒害效应与其由土壤向植物地上部分运输有关,揭示Cd~(2+)转运途径及其调控机制可为提高植物抗镉性以及镉污染的植物修复提供依据。对Cd~(2+)在植物体内的转运途径,特别是限制Cd~(2+)移动的细胞结构和分子调控机制研究进展进行了回顾。Cd~(2+)通过共质体和质外体途径穿过根部皮层进入木质部的过程中,大部分在皮层细胞间沉积,少部分抵达中柱后转移到地上部分。为了免受Cd~(2+)的危害,植物体产生了多种限制Cd~(2+)吸收和转移的生理生化机制:1)环绕在内皮层径向壁和横向壁上的凯氏带阻止Cd~(2+)以质外体途径进入木质部;2)螯合剂与进入根的Cd~(2+)螯合形成稳定化合物并区隔在液泡中;3)通过H+/Cd~(2+)离子通道等将Cd~(2+)逆向转运出根部。植物共质体和质外体途径转运重金属镉的能力以及两条途径的串扰尚待进一步明晰和阐明。  相似文献   

3.
Previous work in our laboratory led to the isolation of a cadmium (Cd)-resistant variant (Cdr2C10) of the line CHO Chinese Hamster cell having a 10-fold greater resistance to the cytotoxic action of Cd2+ compared with the CHO cell. This resistance was attributed to an increased capacity of the Cd2+-resistant Cdr2C10 subline to induce synthesis of the Cd2+- and Zn2+-binding protein(s), metallothionein(s) (MT). Evidence that Cd2+ behaves as an analog of the essential trace metal, Zn2+, especially as an inducer of MT synthesis, suggested that the Cdr and CHO cell types could be employed to investigate cellular Zn2+ metabolism. In the present study, measurements were made to compare CHO and Cdr cell types for (a) growth as a function of the level of ZnCl2 added to the culture medium, (b) uptake and subcellular distribution of Zn2+, and (c) capacity to induce MT synthesis. The results of these measurements indicated that (a) both CHO and Cdr cell types grew normally (T d≊16–18 h) during exposures to Zn2+ at levels up to 100 μM added to the growth medium, but displayed abrupt growth inhibition at higher Zn2+ levels, (b) Cdr cells incorporate fourfold more Zn2+ during a 24-h exposure to the maximal subtoxic level of Zn2+ and (c) the CHO cell lacks the capacity to induce MT synethesis while the Cdr cell is proficient in this response during exposure to the maximal subtoxic Zn2+ level. These findings suggest that (a) the CHO and Cdr cell systems will be useful in further studies of cellular Zn2+ metabolism, especially in comparisons of Zn2+ metabolism in the presence and absence of induction of the Zn2+-sequestering MT and (b) a relationship exists between cellular capacity to induce MT synthesis and capacity for cellular Zn2+ uptake.  相似文献   

4.
The detailed spectral changes observed in the absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra upon addition of Cd2+ to rat liver Cd, Zn-metallothionein (MT) are reported. Results from dialysis experiments clearly demonstrate that up to 8.6 mole equivalents of Cd2+ can be bound to this protein. The excess Cd2+ ions bound appear to have lower binding constants than those of the first seven Cd2+ ions bound. Red blood cell hemolysate (RBC) can compete with the metallothionein for all Cd2+ bound in excess of seven mole equivalents. Thus the RBC hemolysate method of estimating protein concentrations is shown to be correct when based upon complete loading of all binding sites in MT with Cd2+.  相似文献   

5.
《Free radical research》2013,47(1):297-303
The active site in bovine copper, zinc superoxide dismutase (Cu2. Zn2 SOD) has been studied by 111Cd time differential Perturbed Angular Correlation (PAC) on enzyme with Zn2+ replaced by excited 'Cd2+. The PAC spectra obtained for both the oxidized and the reduced form of Cu2Cd2SOD show no asymmetry between the two Zn-sites in the dimeric enzyme. The spectv further reveal that a significant change has taken place at the Zn-site in the reduced form compared to the oxidized form.

Semi-empirical calculations based on the Angular Overlap Model (AOM) and coordinates from the crystal structure of the native enzyme are in agreement with the experimental PAC data of the oxidized enzyme. The results indicate that Cd2+ coordinates in the same manner as Zn2+ and that the crystal structure of SOD is valid for the enzyme in solution. The PAC spectrum of the reduced enzyme can be explained by extending the AOM calculations to the enzyme in the reduced form and assuming that the imidazol ring of His61 is no longer bridging the copper and cadmium ions in the reduced state.  相似文献   

6.
[目的] 探究镉吸附细菌是否能够高效固定土壤有效镉(Cd),为土壤有效Cd的微生物固定提供理论依据。[方法] 利用含Cd2+牛肉膏蛋白胨液体培养基对细菌进行Cd的耐受性测试筛选出镉抗性强的菌株;通过16S rRNA基因相似性及系统进化分析鉴定耐镉细菌,将菌细胞加入含CdCl2溶液中进行Cd2+吸附效率测定;通过土培模拟实验,测定土壤pH、碱解氮、有效磷、速效钾、有机质、CEC、有效Cd及微生物数量来分析镉吸附细菌对镉污染土壤的影响。[结果] 从德阳鱼腥草根际土壤中分离获得的57株细菌对Cd2+表现出不同程度的抗性,并从中筛选出3株耐Cd优势细菌普罗威登斯菌属(Providencia)DY8、芽孢杆菌属(Bacillus)DY3和芽孢杆菌属(Bacillus)DY1-4。其对溶液中的Cd2+表现出较好的吸附作用,吸附效率随着Cd2+浓度升高而降低。DY8、DY3、DY1-4能使镉污染土壤中有效Cd含量分别降低72.11%、68.55%、62.32%,同时显著提高镉污染土壤中碱解氮、有效磷的含量。[结论] Cd污染农田土壤中含有丰富的耐Cd微生物资源,Cd吸附细菌能降低土壤中有效Cd的含量,且能有效改善土壤养分条件。  相似文献   

7.
On soils differing in total Cd concentration, organic matter content and pH, but with the same compost treatment, a significant linear relation was found between the calculated Cd2+ concentration of the soil solution and the Cd concentration of lettuce grown under field conditions. The Cd2+ concentration was calculated with the equation for the exchange reaction between Cd2+ and Ca2+.  相似文献   

8.
In this study, the adsorption behavior of Cd ions by rhizosphere soil (RS) and non-rhizosphere soil (NS) originated from mulberry field was investigated. The Langmuir, Freundlich and the Dubinin–Radushkevich (D-R) equations were used to evaluate the type and efficiency of Cd adsorption. The RS was characterized by lower pH but the higher content of soil organic matter and cation exchange capacity (CEC) as compared to NS. Also, the maximum adsorption of Cd2+ for RS (5.87 mg/g) was slightly bigger than that for NS (5.36 mg/g). In Freundlich isotherm, the Kf of the adsorption of Cd2+ to surface of the RS components was higher than that of the NS, indicating stronger attraction between Cd2+ and components of the RS. According to the D-R model, the adsorption of Cd2+ by both soils was dominated by ion exchange phenomena. These results indicated that mulberry roots modified physical and chemical properties of the RS under field conditions, which also affected the Cd sorption efficiency by soil components during laboratory experiments. Current knowledge of the Cd2+ sorption processes in the rhizosphere of mulberry may be important if these trees are planted for use in phytoremediation of Cd contaminated soils.  相似文献   

9.

Aims

Contamination of sunflower (Helianthus annuus L.) by cadmium (Cd) is a concern for food and feed safety as this species accumulates Cd to a greater extent than other crops. We examined the relationships between root architecture and Cd2+ uptake by roots.

Methods

We determined and mathematically modelled the longitudinal variation of Cd2+ influx in first order roots of sunflower grown in hydroponics by using short-term exposure to 109Cd-labelled solutions (0.8 to 500 nM). Thereafter, by taking into account the longitudinal variation of the influx, we simulated the uptake of Cd2+ for 24 h by cohorts of roots characterised by various architectural characteristics.

Results

Cd2+ influx at the root tip was on average 2.9 times that of the basal region close to the taproot. The simulations indicated that the total Cd2+ uptake by root cohorts mainly depends on 1/ the root diameter and the number of roots, 2/ the value of the Cd2+ influx at the basal region 3/ the stronger influx at the root tip.

Conclusion

Considering a higher Cd2+ influx at the root tip may be important to understand the relationship between root architecture and Cd2+ uptake by the root system.  相似文献   

10.
To understand the physiological mechanism that confers Cd sensitivity, root morphology and Cd uptake kinetics of the Cd-sensitive mutant and wild type rice were investigated. The root length, root surface area, and root number of mutant rice decreased more significantly with increasing Cd concentration in growth media compared with the wild type rice. The uptake kinetics for 109Cd2+ in roots of both the mutant and wild type rice were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period. Concentration-dependent Cd2+ influx in both species could be characterized by the Michaelis-Menten equation, with similar apparent Km values for mutant and wild type rice (2.54 and 2.37 μM, respectively). However, the Vmax for Cd2+ influx in mutant root cells was nearly 2-fold higher than that for wild type rice, indicating that enhanced absorption into the root is one of the mechanisms involved in Cd sensitivity in mutant rice.  相似文献   

11.
Mung bean seedlings inoculated with Enterobacter asburiae PSI3, a gluconic acid-producing rhizosphere isolate, enhanced plant growth in the presence of phytotoxic levels of Cd2+ in gnotobiotic pot experiments as compared to the uninoculated Cd-treated plants. Addition of organic acids to Cd-stressed seedlings promoted root elongation. Hematoxylin competition assays showed that organic acids could displace Cd2+ from the Cd2+: hematoxylin complex in the same order of effectiveness as was found for restoration of root net elongation viz. oxalate > malate > succinate while gluconate was effective at higher concentrations. Root associated Cd2+, assessed by hematoxylin staining of roots was found to be reduced when roots were treated with organic acid. Cd stress increased antioxidant enzymes such as peroxidase and superoxide dismutase in mung bean roots while organic acid treatment suppressed the up-regulation of these enzymes by Cd.  相似文献   

12.
The aim of this study was to assess how the solubility and the speciation of Cd in soil solution were affected over time by the soil temperature for three metal-contaminated soils. The changes of solution Cd concentration (either total or free ionic) and other physico-chemical parameters (e.g. pH, ionic strength, the concentrations of ${\text{NO}}_3^ - $ , ${\text{SO}}_4^{2 - } $ , Ca, Mg and dissolved organic carbon) were monitored over a 28-day culture of lettuce (Lactuca sativa L.) in soils incubated at 10°C, 20°C or 30°C. The major result of this study was that Cd2+ concentration greatly varied over time in soil solution. The Cd2+ concentration declined over time in soil solution as did the concentration of cations that may compete for adsorption (Ca2+, Mg2+). The rise in soil temperature primarily impacted on the concentration of Cd2+ via promoting the microbial C-degradation and, thus, the complexation of Cd in soil solution. The integration of the temporal variations in Cd2+ concentration through the calculation of the root exposure to solution Cd (E Cd) provided a fairly close and robust prediction of Cd concentration in lettuce roots. The present work thus provided new insights on the fate of Cd in contaminated soils that may be relevant for predicting the root uptake of Cd.  相似文献   

13.
Given that Cd accumulates within plant tissues to levels that are toxic to animals, it is necessary to understand the role of plants in highly Cd-contaminated systems and their subsequent impact on the health of animals. A solution culture experiment was conducted to elucidate the effects of increasing Cd2+ activity ({Cd2+}) on growth of Rhodes grass (Chloris gayana Kunth.) and signal grass (Brachiaria decumbens Stapf.). The shoot and root fresh mass of both Rhodes grass and signal grass was reduced by 50% at ca. 0.5 µM {Cd2+}. Elevated {Cd2+} resulted in a significant decrease in the tissue Mn concentration for both the shoots and roots, and caused a chlorosis of the veins in the shoots. Root hair growth was prolific even at high {Cd2+}, thus root hair growth appeared to be less sensitive to elevated Cd than was root growth per se. The critical shoot tissue concentrations (50% reduction in growth), 230 µg g?1 for Rhodes grass and 80 µg g?1 for signal grass, exceeded the maximum level of Cd tolerated in the diet of animals (ca. 5 µg g?1). When assessing the risk associated with the revegetation of Cd-contaminated sites with Rhodes grass or signal grass, careful consideration must be given, therefore, to the transfer of toxic concentrations of Cd to grazing animals and through the wider food chain.  相似文献   

14.
Mixture toxicity is an important issue for the risk assessment of environmental pollutants, for which an extensive amount of data are necessary in evaluating their potential adverse health effects. However, it is very hard to decipher the interaction between compounds due to limited techniques. Contamination of heavy metals and organophosphoric insecticides under the environmental and biological settings poses substantial health risk to humans. Although previous studies demonstrated the co-occurrence of cadmium (Cd) and chlorpyrifos (CPF) in environmental medium and food chains, their interaction and potentially synergistic toxicity remain elusive thus far. Here we integrated the approaches of thin-layer chromatography and 1H NMR to study the interaction between Cd2+ and CPF in inducing hepatoxicity. A novel interaction was identified between Cd2+ and CPF, which might be the bonding between Cd2+ and nitrogen atom in the pyridine ring of CPF, or the chelation formation between one Cd2+ and two CPF molecules. The Cd-CPF complex was conferred with distinct biological fate and toxicological performances from its parental components. We further demonstrated that the joint hepatoxicity of Cd ion and CPF was chiefly due to the Cd-CPF complex-facilitated intracellular transport associated with oxidative stress.  相似文献   

15.
The effect of pH-increases due to Ca(OH)2 and KOH addition on the adsorption of cadmium (Cd) was examined in two soils which varied in their variable-charge components. The effect of Ca(OH)2 on immobilization and phytoavailability of Cd from one of the soils, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was further evaluated using mustard (Brassica juncea L.) plants. Cadmium immobilization in soil was evaluated by a chemical fractionation scheme. The addition of Ca(OH)2 and KOH increased the soil pH, thereby increasing the adsorption of Cd, the effect being more pronounced in the soil dominated by variable charge components. There was a greater increase in Cd2+ adsorption in the KOH-treated than the Ca(OH)2-treated soil, which is attributed to the greater competition of Ca2+ for adsorption. Increasing addition of Cd enhanced Cd concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Although addition of Ca(OH)2 effectively reduced Cd phytotoxicity, Cd uptake increased at the highest level, probably due to decreased Cd2+ adsorption resulting from increased Ca2+ competition. There was a significant inverse relationship between dry matter yield and Cd concentration in soil solution. Addition of Ca(OH)2 decreased the concentration of the soluble + exchangeable Cd fraction but increased the concentration of inorganic-bound Cd fractions in soil. Since there was no direct evidence for CdCO3 or Cd(OH)2 precipitation in the variable charge soil used for the plant growth experiment, alleviation of phytotoxicity can be attributed primarily to immobilization of Cd by enhanced pH-induced increases in negative charge.  相似文献   

16.
As a vital cell-signaling molecule, nitric oxide (NO) has been reported to regulate toxic metal responses in plants. Our recent report has suggested that caspase-3-like protease activation was detected in Arabidopsis (Arabidopsis thaliana) after Cd2+ treatment. NO contributed caspase-3-like protease activation in Cd2+ induced Arabidopsis thaliana programmed cell death (PCD), which was mediated by MPK6. It was first shown that NO promotes Cd2+-induced Arabidopsis PCD by promoting MPK6-mediated caspase-3-like activation. Our study contributed to the understanding of NO signaling pathway in Cd2+-induced Arabidopsis thaliana PCD. Although several studies have revealed that NO regulates plant PCD, compared with the study of signaling pathways involved in animal cell apoptosis, the mechanism of NO function still remains elusive and the molecular mechanisms of MAPK are far from clear in Cd2+-induced PCD. By using the fluorescence techniques and the Arabidopsis seedlings as the reference model, the subsequent researches have been performed to obtain comprehensive understanding of Cd2+-induced plant PCD.  相似文献   

17.
Solubility of metal in contaminated soils is a key factor which controls the phytoavailability and toxic effects of metals on soil environment. The chemical equilibria of metal ions between soil solution and solid phases govern the solubility of metals in soil. Hence, an attempt was made to identify the probable solid phases (minerals), which govern the solubility of Zn2+ and Cd2+ in zinc smelter effluent-irrigated soils. Estimation of free ion activities of Zn2+ (pZn2+) and Cd2+ (pCd2+) by Baker soil test indicated that metal ion activities were higher in smelter effluent-irrigated soils as compared to that in tubewell water-irrigated soils. Identification of solid phases further reveals that free ion activity of Zn2+ and Cd2+ in soil highly contaminated with Zn and Cd due to long-term irrigation with zinc smelter effluent is limited by the solubility of willemite (Zn2SiO4) in equilibrium with quartz and octavite (CdCO3), respectively. However, in case of tubewell water-irrigated soil, franklinite (ZnFe2O4) in equilibrium with soil-Fe and exchangeable Cd are likely to govern the activity of Zn2+ and Cd2+ in soil solution, respectively. Formation of highly soluble minerals namely, willemite and octavite indicates the potential ecological risk of Zn and Cd, respectively in smelter effluent irrigated soil.  相似文献   

18.
19.
Effect of Cl on Cd uptake by Swiss chard in nutrient solutions   总被引:6,自引:1,他引:5  
Swiss chard (Beta vulgaris L., cv. Fordhook Giant) was grown in nutrient solution with Cl concentrations varying between 0.01 mM and 120 mM. Solution Na concentration and ionic strength were maintained in all treatments by compensating with NaNO3. All solutions contained Cd (50 nM, spiked with 109Cd). Three different Cd2+ buffering systems were used. In one experiment, Cd2+ activity was unbuffered; its activity decreased with increased Cl concentration as a result of the formation of CdCln 2–n species. In the other experiments, Cd2+ activity was buffered by the chelator nitrilotriacetate (NTA, 50 M) and ethylene-bis-(oxyethylenenitrilo)-tetraacetate (EGTA, 50 M) at about 10–9 M and 10–11 M, respectively. Plant growth was generally unaffected by increasing Cl concentrations in the three experiments. In unbuffered solutions, Cd concentrations in plant tissue decreased significantly (p<0.01) (approximately 2.4-fold) as solution Cl concentration increased from 0.01 mM to 120 mM. However, this decrease was smaller in magnitude than the 4.7-fold decrease in Cd2+ activity as calculated by the GEOCHEM-PC program for the same range of Cl concentrations. In solutions where Cd2+ activity was buffered by NTA, Cd concentrations in plant tissue increased approximately 1.4-fold with increasing Cl concentration in solution, while the Cd2+ activity was calculated to decrease 1.3-fold. In solutions where Cd2+ activity was buffered by EGTA, Cd concentrations in the roots increased 1.3-fold with increasing Cl concentration in solution but there was no effect of Cl on shoot Cd concentrations. The data suggest that either CdCln 2–nspecies can be taken up by plant roots or that Cl enhances uptake of Cd2+ through enhanced diffusion of the uncomplexed metal to uptake sites.Abbreviations DAS days after sowing - EGTA ethylene-bis-(oxyethylenenitrilo)-tetraacetate - HBED N,N-bis(2-hydroxybenzyl)-ethylenediamine-N,N-diacetate - NTA nitrilotriacetate  相似文献   

20.
The effect of cadmium on the photosynthetic activity of Synechocystis PCC 6803 was monitored in this study. The oxygen evolving capacity of Synechocystis treated with 40 μM CdCl2 was depressed to 10% of the maximum in 15 min, indicating that Cd2+ penetrated rapidly into the cells and blocked the photosynthetic activity. However, neither photosystem II (PSII) nor photosystem I (PSI) activity showed a significant short-term decrease which would explain this fast decrease in the whole-chain electron transport. Thermoluminescence measurements have shown that the charge separation and stabilization in PSII remains essentially unchanged during the first few hours following the Cd2+ treatment. The electron flow through PSI was monitored by following the redox changes of the P700 reaction centers of PSI. Alterations in the oxidation kinetics of P700 in the Cd2+-treated cells indicated that Cd2+ treatment might affect the available electron acceptor pool of P700, including the CO2 reduction and accumulation in the cells. Perturbed angular correlation of γ-rays (PAC) using the radioactive 111mCd isotope was used to follow the Cd2+ uptake at a molecular level. The most plausible interpretation of the PAC data is that Cd2+ is taken up by one or more Zn proteins replacing Zn2+ in Synechocystis PCC 6803. Using the radioactive 109Cd isotope, a protein of approximately 30 kDa that binds Cd2+ could be observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicate that Cd2+ might inactivate different metal-containing enzymes, including carbonic anhydrase, by replacing the zinc ion, which would explain the rapid and almost full inhibition of the photosynthetic activity in cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号