首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultra sensitive method for the direct measurement of 9-(2-phosphonylmethoxyethyl)adenine (PMEA), an antiviral agent for hepatitis B, in human serum using high performance liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed. This method involves the addition of [13C]PMEA (contains 5 13C) as internal standard, the purification and enrichment by a MCX solid phase extraction (SPE) cartridge, and quantitative analysis using LC-MS/MS. The MS/MS is selected to monitor the m/z 272 --> 134 and m/z 277 --> m/z 139 transitions for PMEA and [13C]PMEA, respectively, using negative electrospray ionization. The MS/MS response is linear over a concentration of 0.1-10 ng/ml with a lower limit of quantitation (LLOQ) of 0.1 ng/ml. The mean inter-assay accuracy (%Bias) for quality control (QC) at 0.1, 0.25, 1.0, and 10 ng/ml are 10, 1.6, -0.8, and 0.0%, respectively. The mean inter-assay precision (%CV) for the corresponding QCs is 3.9, 3.8, 5.3, and 3.4%, respectively. The method has been used to determine PMEA concentration in human serum following a single oral administration of a PMEA pro-drug at dose of 10 and 30 mg.  相似文献   

2.
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.  相似文献   

3.
A simple, sensitive and specific HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the simultaneous quantification of tiloronoxim and its major active metabolite, tilorone, in human urine. The analytes, together with metoprolol, which was employed as an internal standard (IS), were extracted with a mixture solvent of chloroform/ethyl ether (1/2, v/v). The chromatographic separation was performed on a narrow-bore reversed phase HPLC column with a gradient mobile phase of methanol/water containing 15 mM ammonium bicarbonate (pH 10.5). The API 3,000 mass spectrometer was equipped with a TurboIonSpray interface and was operated on positive-ion, multiple reaction-monitoring (MRM) mode. The mass transitions monitored were m/z 426.3-->100.0, m/z 411.3-->100.0 and m/z 268.3-->116.1 for tiloronoxim, tilorone and the IS, respectively. The assay exhibited a linear dynamic range of 1-100 ng/ml for both tiloronoxim and tilorone based on the analysis of 0.2 ml aliquots of urine. The lower limit of quantification was 1 ng/ml for both compounds. Acceptable precision and accuracies were obtained for concentrations over the standard curve ranges. Run time of 8 min for each injection made it possible to analyze a high throughput of urine samples. The assay has been successfully used to analyze human urine samples from healthy volunteers.  相似文献   

4.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with electrospray ionization (ESI) was developed and validated for the simultaneous determination of pitavastatin and its lactone in human plasma and urine. Following a liquid-liquid extraction, both the analytes and internal standard racemic i-prolact were separated on a BDS Hypersil C(8) column, using methanol-0.2% acetic acid in water (70: 30, v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 422.4-->m/z 290.3 for pitavastatin, m/z 404.3-->m/z 290.3 for pitavastatin lactone and m/z 406.3-->m/z 318.3 for the internal standard, respectively. Linear calibration curves of pitavastatin and its lactone were obtained in the concentration range of 1-200 ng/ml, with a lower limit of quantitation of 1 ng/ml. The intra- and inter-day precision values were less than 4.2%, and accuracies were between -8.1 and 3.5% for both analytes. The proposed method was utilized to support clinical pharmacokinetic studies of pitavastatin in healthy subjects following oral administration.  相似文献   

5.
A simple, reliable and sensitive liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for quantification of N-acetylglucosamine in human plasma. Plasma samples were pretreated with acetonitrile for protein precipitation. The chromatographic separation was performed on Hypersil Silica column (150mmx2mm, 5microm). The deprotonated analyte ion was detected in negative ionization mode by multiple reaction monitoring mode. The mass transition pairs of m/z 220.3-->118.9 and m/z 226.4-->123.2 were used to detect N-acetylglucosamine and internal standard 13C6-N-acetylglucosamine, respectively. The assay exhibited a linear range from 20 to 1280ng/ml for N-acetylglucosamine in human plasma. Acceptable precision and accuracy were obtained for concentrations of the calibration standard and quality control. The validated method was successfully applied to analyze human plasma samples in a pharmacokinetic study.  相似文献   

6.
Rimonabant is the first therapeutically relevant cannabinoid antagonist, licensed in Europe for treatment of obesity when a risk factor is associated. The objective of this study was to develop and validate a method for measurement of rimonabant in human plasma and hair using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Rimonabant and AM-251 (internal standard) were extracted from 50muL of plasma or 10mg of hair using diethylether. Chromatography was performed on a 150mmx2.1mm C18 column using a mobile phase constituted of formate buffer/acetonitrile. Rimonabant was ionized by electrospray in positive mode, followed by detection with mass spectrometry. Data were collected either in full-scan MS or in full-scan MS/MS mode, selecting the ion m/z 463.1 for rimonabant and m/z 555.1 for IS. The most intense product ion of rimonabant (m/z 380.9) and IS (m/z 472.8) were used for quantification. Calibration curves covered a range from 2.5 (lower limit of quantification) to 1000.0ng/mL (upper limit of quantification) in plasma and from 2.5 to 1000.0pg/mg in hair. Validation results demonstrated that rimonabant could be accurately and precisely quantified in both matrixes: accuracy and precision were within 85-115% and within 15% of standard deviation, respectively. Stability studies in plasma showed that rimonabant was stable during the assay procedure, but a 30% decrease was observed for one concentration after 3 weeks at -20 degrees C. This simple and robust LC-MS/MS method can be used for measuring rimonabant concentrations in human plasma and hair either in clinical or in forensic toxicology.  相似文献   

7.
We have determined three opioidmimetics (compounds I-III) in the rat brain dialysates after intraperitoneal (i.p.) administration of compounds I-III using a liquid chromatography/mass spectrometry with tandem mass spectrometry (LC-MS/MS). The dialysate samples with methanol were directly analyzed by online column-switching liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 421 of m/z 657 for compound I, m/z 421 of m/z 643 for compound II, and m/z 407 of m/z 629 for compound III) on LC-MS/MS with electrospray ionization (ESI), opioidmimetics in rat brain dialysates were determined. Calibration curves of the method showed a good linearity in the range of 10-100 ng/ml for each compound. The limit of determination was estimated to be ca. 1 ng/ml for compounds II and III, and ca. 5 ng/ml for compound I, respectively. The precision of analysis showed coefficients of variation ranging from 4.7 to 10.4% at compound III concentration (10-100 ng/ml) in Ringer's solution. As a result, the procedure proved to be very suitable for routine analysis. The method was applied to the analysis of three opioidmimetics in the brain dialysate samples from rats treated with these compounds.  相似文献   

8.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

9.
A sensitive and specific method for determination of viaminate in human plasma by using high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS) was developed in this study. The plasma samples were simply deproteinated, extracted, evaporated, and then reconstituted in 200 microl of methanol prior to analysis. Chromatographic separation was carried out on a Shimadzu VP-ODS column (250 mm x 2.0 mm, 5 microm) with a mobile phase of methanol-water (95:5, v/v) at a flow rate of 0.2 ml/min. Quantification was performed in the negative-ion electrospray ionization mode by selected ion monitoring of the product ions at m/z 164 for viaminate and m/z 109 for testosterone propionate which was used as the internal standard. The corresponding parent ions were m/z 446 and m/z 345. A linear calibration curve was observed within the concentration range of 0.10-200 ng/ml. The lowest limit of quantitation (LLOQ) was 0.1 ng/ml. The extraction-efficiency at three concentrations was 100.7, 93.6, and 99.7%. Practical utility of this new LC-MS/MS method was confirmed in pilot pharmacokinetic studies in humans following oral administration.  相似文献   

10.
A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of triazolam and its metabolites, alpha-hydroxytriazolam (alpha-OHTRZ) and 4-hydroxytriazolam (4-OHTRZ), was developed and validated. Triazolam-D4 was used as the internal standard (IS). This analysis was carried out on a Thermo((R)) C(18) column and the mobile phase was composed of acetonitrile:H(2)O:formic acid (35:65:0.2, v/v/v). Detection was performed on a triple-quadrupole tandem mass spectrometer using positive ion mode electrospray ionization (ESI) and quantification was performed by multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 343.1-->308.3, 359.0-->308.3, 359.0-->111.2 and 347.0-->312.0 for triazolam, alpha-OHTRZ, 4-OHTRZ and triazolam-D4, respectively. LLOQ of the analytical method was 0.05ng/mL for triazolam and 0.1ng/mL for alpha-OHTRZ and 4-OHTRZ. The within- and between-run precisions were less than 15.26% and accuracy was -8.08% to 13.33%. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of triazolam in healthy Chinese volunteers.  相似文献   

11.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 320.3-->247.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 2.0-489.1 ng/mL for chloroquine in dog plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.4 and 2.0 ng/mL, respectively in 0.05 mL plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range of 2.0-489.1 ng/mL. A run time of 2.0 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully used to analyze samples of dog plasma during non-clinical study of chloroquine.  相似文献   

12.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometric method is described for the determination of metolazone in human blood. Metolazone was extracted from blood using ethyl acetate and separated on a C18 column interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase consisting of a mixture of acetonitrile, 10 mmol/l ammonium acetate and formic acid (60:40:0.1, v/v/v) was delivered at a flow rate of 0.5 ml/min. Electrospray ionization (ESI) source was operated in positive ion mode. Selected reaction monitoring (SRM) mode using the transitions of m/z 366-->m/z 259 and m/z 321-->m/z 275 were used to quantify metolazone and the lorazepam (internal standard), respectively. The linearity was obtained over the concentration range of 0.5-500 ng/ml for metolazone and the lower limit of quantitation (LLOQ) was 0.5 ng/ml. For each level of QC samples, inter- and intra-run precision was less than 8.07 and 3.56% (relative standard deviation (RSD)), respectively, and the bias was within +/-4.0%. This method was successfully applied to the pharmacokinetic study of metolazone formulation after oral administration to humans.  相似文献   

13.
Glipizide and rosiglitazone are widely used to treat Type 2 diabetes. In order to investigate drug-drug protein binding interaction between glipizide and rosiglitazone, a method was developed and validated for simultaneously determining the free (unbound) fraction of glipizide and rosiglitazone in plasma employing equilibrium dialysis for the separation of free drug and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for quantitation. Post-dialysis human plasma or buffer samples of 0.2 ml were extracted using a liquid-liquid extraction procedure and analyzed by a high performance liquid chromatography electrospray tandem mass spectrometer system. The compounds were eluted isocratically on a Zorbax SB-Phenyl column, ionized using an atmospheric pressure electrospray ionization source and analyzed in positive ion mode with multiple reaction monitoring. The ion transitions monitored were m/z 446-->321 for glipizide, m/z 358-->135 for rosiglitazone, and m/z 271-->155 for tolbutamide (internal standard, IS). The chromatographic run time was 5 min per injection, with retention times of 2.3, 3.4 and 2.3 min for glipizide, rosiglitazone and IS, respectively. The calibration curves of glipizide and rosiglitazone were over the range of 1-2000 ng/ml (r(2)>0.9969) in the combined matrix of human plasma and isotonic sodium phosphate buffer (1:1, v/v). The inter-assay precision and accuracy of the quality control samples were <10.9% of coefficient of variability and >93.5% and 94.5% of nominal concentration for glipizide and rosiglitazone, respectively. The lower limit of quantitation of both glipizide and rosiglitazone was 1.0 ng/ml. Both glipizide and rosiglitazone bound to plasma protein extensively (>99% bound). Glipizide and rosiglitazone free fraction averaged 0.678+/-0.071 and 0.389+/-0.061%, respectively, at plasma concentration of 1000 ng/ml. This developed method proves reproducible and sensitive and its application to clinical samples is also reported.  相似文献   

14.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometric method is described for the determination of tamsulosin in dog plasma. Tamsulosin was extracted from plasma using a mixture of hexane-ethyl acetate (2:1, v/v) and separated on a C18 column interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase consisting of a mixture of methanol, water and formic acid (80:20:1, v/v/v) was delivered at a flow rate of 0.5 ml/min. Atmospheric pressure chemical ionization (APCI) source was operated in positive ion mode. Selected reaction monitoring (SRM) mode using the transitions of m/z 409-->m/z 228 and m/z 256-->m/z 166.9 were used to quantify tamsulosin and the internal standard, respectively. The linearity was obtained over the concentration range of 0.1-50.0 ng/ml for tamsulosin and the lower limit of quantitation was 0.1 ng/ml. For each level of QC samples, inter- and intra-run precision was less than 5.0 and 4.0% (relative standard deviation (R.S.D.)), respectively, and accuracy was within +/-0.3% (relative error (R.E.)). This method was successfully applied to pharmacokinetic study of a tamsulosin formulation product after oral administration to beagle dogs.  相似文献   

15.
A sensitive method using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) was developed and validated for the analysis of antihistamine drug azatadine in human plasma. Loratadine was used as internal standard (IS). Analytes were extracted from human plasma by liquid/liquid extraction using ethyl acetate. The organic phase was reduced to dryness under a stream of nitrogen at 30 °C and the residue was reconstituted with the mobile phase. 5 μL of the resulting solution was injected onto the LC-MS/MS system. A 4.6 mm × 150 mm, I.D. 5 μm, Agilent TC-C(18) column was used to perform the chromatographic analysis. The mobile phase consisted of ammonium formate buffer 0.010 M (adjusted to pH 4.3 with 1M formic acid)/acetonitrile (20:80, v/v) The chromatographic run time was 5 min per injection and flow rate was 0.6 mL/min. The retention time was 2.4 and 4.4 min for azatadine and IS, respectively. The tandem mass spectrometric detection mode was achieved with electrospray ionization (ESI) iron source and the multiple reaction monitoring (MRM) (291.3 → 248.2m/z for azatadine, 383.3 → 337.3m/z for IS) was operated in positive ion modes. The low limit of quantitation (LLOQ) was 0.05 ng/mL. The intra-day and inter-day precision of the quality control (QC) samples was 8.93-11.57% relative standard deviation (RSD). The inter-day accuracy of the QC samples was 96.83-105.07% of the nominal values.  相似文献   

16.
A liquid chromatographic-tandem mass spectrometric method (LC-MS/MS) for the determination of ulifloxacin, the active metabolite of prulifloxacin, in human plasma is described. After sample preparation by protein precipitation with methanol, ulifloxacin and ofloxacin (internal standard) were chromatographically separated on a C(18) column using a mobile phase consisting of methanol, water and formic acid (70:30:0.2, v/v/v) at a flow rate of 0.5 ml/min and then were detected using MS/MS by monitoring their precursor-to-product ion transitions, m/z 350-->m/z 248 for ulifloxacin and m/z 362-->m/z 261 for ofloxacin, in selected reaction monitoring (SRM) mode. Positive electrospray ionization was used for the ionization process. The linear range was 0.025-5.0 microg/ml for ulifloxacin with a lower limit of quantitation of 0.025 microg/ml. Within- and between-run precision was less than 6.6 and 7.8%, respectively, and accuracy was within 2.0%. The recovery ranged from 92.1 to 98.2% at the concentrations of 0.025, 0.50 and 5.0 microg/ml. Compared with the reported LC method, the present LC-MS/MS method can directly determine the ulifloxacin in human plasma without any need of derivatization. The present method has been successfully used for the pharmacokinetic studies of a prulifloxacin formulation product after oral administration to healthy volunteers.  相似文献   

17.
We report here a quantitative method for the analysis of ABT-578 in human whole blood samples. Sample preparation was achieved by a semi-automated 96-well format liquid-liquid extraction (LLE) method. Aluminum/polypropylene heat seal foil was used to enclose each well of the 96-well plate for the liquid-liquid extraction. A liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) method with pre-column regeneration was developed for the analysis of sample extracts. Selective reaction monitoring (SRM) of the mass transitions m/z 983-935 and m/z 931-883 was employed for the detection of ABT-578 and internal standard, respectively. The ammonium adduct ions [M + NH(4)](+) generated from electrospray ionization were monitored as the precursor ions. The assay was validated for a linear dynamic range of 0.20-200.75ng/ml. The correlation coefficient (r) was between 0.9959 and 0.9971. The intra-assay CV (%) was between 1.9 and 13.5% and the inter-assay CV (%) was between 4.7 and 11.3%. The inter-assay mean accuracy was between 86.4 and 102.5% of the theoretical concentrations.  相似文献   

18.
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of hydroxysafflor yellow A (HSYA) in human plasma. HSYA was extracted from human plasma by using solid-phase extraction technique. Puerarin was used as the internal standard. A Shim-pack VP-ODS C(18) (150mm x 4.6mm, 5 microm) column and isocratic elution system composing of methanol and 5mM ammonium acetate (80:20, v/v) provided chromatographic separation of analytes followed by detection with mass spectrometry. The mass transition ion-pair was followed as m/z 611.19-->491.19 for HSYA and m/z 415.19-->295.10 for puerarin. The proposed method has been validated with a linear range of 1-1000 ng/ml for HSYA with a correlation coefficient >/=0.999. The lower limit of quantitation was 1 ng/ml. The intra-batch and inter-batch precision and accuracy were within 10%. The average extraction recovery was 81.7%. The total run time was 5.5 min. The validated method was successfully applied to the study on pharmacokinetics of HSYA in 12 healthy volunteers after a single oral administration of safflower oral solution containing 140 mg of HSYA.  相似文献   

19.
A sensitive high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous determination of procaine and its metabolite p-aminobenzoic acid (PABA). N-Acetylprocainamide (NAPA) was used as an internal standard for procaine and PABA analysis. This assay method has also been validated in terms of linearity, lower limit of detection, lower limit of quantitation, accuracy and precision as per ICH guidelines. Chromatography was carried out on an XTerra MS C(18) column and mass spectrometric analysis was performed using a Quattro Micro mass spectrometer working with electro-spray ionization (ESI) source in the positive ion mode. Enhanced selectivity was achieved using multiple reaction monitoring (MRM) functions, m/z 237-->100, m/z 138-->120, and m/z 278-->205 for procaine, PABA and NAPA, respectively. Retention times for PABA, procaine and NAPA were 4.0, 4.7 and 5.8min, respectively. Linearity for each calibration curve was observed across a range from 100nM to 5000nM for PABA, and from 10nM to 5000nM for procaine. The intra- and inter-day relative standard deviations (RSD) were <5%.  相似文献   

20.
We describe a liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for levocetirizine quantification (I) in human plasma. Sample preparation was made using a fexofenadine (II) addition as internal standard (IS), liquid-liquid extraction using cold dichloromethane, and dissolving the final extract in acetonitrile. I and II (IS) were injected in a C18 column and the mobile phase composed of acetonitrile:water:formic acid (80.00:19.90:0.10, v/v/v) and monitored using positive electrospray source with tandem mass spectrometry analyses. The selected reaction monitoring (SRM) was set using precursor ion and product ion combinations of m/z 389>201 for I and m/z 502>467 for II. The limit of quantification and the dynamic range achieved were 0.5ng/mL and 0.5-500.0ng/mL. Validation results on linearity, specificity, accuracy, precision and stability, as well as its application to the analysis of plasma samples taken up to 48h after oral administration of 5mg of levocetirizine dichloridrate in healthy volunteers demonstrate its applicability to bioavailability studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号